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ABSTRACT  

 We investigated the mechanisms of transcriptional regulation of the PKCδ gene. By 

deletion analysis of the ~1.4 kb (-1448 to +1, relative to transcription start site) 5’-flanking 

sequence of the mouse PKCδ gene, we have identified a basal promoter region, nucleotide 

-148 to +1, required for sufficient PKCδ transcription in NIE115, MN9D, and N2a cells. We 

further identified two NFκB binding sites (κB 1, κB 2) as well as a NERF1a site within the 

basal promoter as key regulatory elements in the mouse PKCδ TATA-less promoter. 

Subsequent functional studies using site-directed mutation analysis revealed that κB 1, but 

not κB 2, is necessary for PKCδ basal expression in both NIE115 and MN9D cells. To 

further facilitate analysis of the regulation of the PKCδ promoter, we cloned a ~2 kb (-1694 

to +289) 5’-promoter segment of the mouse PKCδ gene including the putative PKCδ 

promoter (1694 bp) as well as the GC-rich sequences of the first, non-coding exon (289 bp). 

Deletion analysis of this region indicated the non-coding exon1 GC-rich region that contains 

multiple Sp sites, including four GC boxes and one CACCC box, greatly enhances the basal 

PKCδ promoter activity and directs the highest levels of transcription in NIE115 and MN9D 

cells. In addition, an upstream regulatory region containing adjacent repressive and 

anti-repressive elements with opposing regulatory activities was identified within the region 

-712 to -560. Detailed mutagenesis revealed that each Sp site made a positive contribution to 

PKCδ promoter expression. Overexpression of Sp family proteins markedly stimulated PKCδ 

promoter activity without any synergistic transactivating effect in NIE115 cells. Furthermore, 

experiments in SL2 fly cells identified the long-isoform Sp3 as the essential activator of 

PKCδ transcription. Importantly, both PKCδ promoter activity and endogenous PKCδ 

mRNA in NIE115 cells and primary striatal cultures were inhibited by the Sp protein 
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inhibitor, mithramycin-A. The results from chromatin immunoprecipitation and gel shift 

assays further confirmed the functional binding of Sp proteins to the PKCδ promoter. 

Additionally, we demonstrated that overexpression of p300 or CBP increases the PKCδ 

promoter activity. This stimulatory effect requires intact Sp binding sites and is independent 

of p300 HAT activity. We also investigated the possible involvement of epigenetic 

mechanisms, such as DNA methylation and histone acetylation, in regulation of the PKCδ 

gene. Using bioinformatics method, we found a putative CpG island (+39 to +400) that 

overlaps with mouse PKCδ promoter. By methylation-specific PCR, we found that the PKCδ 

promoter is partially methylated in NIE115, MN9D, and N2a cells. Furthermore, 

administration of DNA methylation inhibitor 5-Aza-deoxycytidine induced hypomethylation 

of the PKCδ promoter and increased expression of PKCδ mRNA in NIE115 cells, further 

suggesting that DNA methylation is involved in mouse PKCδ gene expression in these cells. 

To examine the role of histone acetylation in PKCδ gene expression, we also explored the 

effects of various histone deacetylase (HDAC) inhibitors both in vitro and in vivo. Treatment 

with sodium butyrate (NaBu) significantly enhanced the PKCδ protein and mRNA levels in 

primary striatal and nigral neurons and in NIE115 and MN9D cells. Other HDAC inhibitors, 

valproic acid (VPA), scriptaid, trichostatin A (TSA), and apicidin, all mimicked the action of 

NaBu to induce PKCδ. Furthermore, NaBu treatment in the C57 black mouse model caused a 

time-dependent induction of PKCδ gene expression in the substantial nigra and striatum 

regions. NaBu-induced PKCδ expression correlated with hyperacetylation of the H4 histone 

associated with PKCδ promoter, clearly suggesting that acetylation-dependent chromatin 

remodeling may play a role in PKCδ upregulation. To further explore the molecular basis of 

histone acetylation-dependent PKCδ upregulation, PKCδ promoter analysis was performed 
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using reporter gene assays. NaBu and other tested HDAC inhibitors all dramatically 

increased the PKCδ promoter activity in a dose-dependent manner. By using deletion 

analyses, the minimal fragment of the PKCδ promoter in response to NaBu was mapped to 

an 81 bp non-coding exon 1 region (+209 to +289). The site-directed mutagenesis studies 

revealed that multiple GC sites within this region are major elements conferring the 

responsiveness to NaBu-induced promoter activity. In addition, transcriptional activities of 

Sp1 and Sp3 were significantly induced by NaBu. Importantly, the ectopic expression of Sp1, 

Sp3, or Sp4 significantly enhanced NaBu-mediated transactivation of PKCδ promoter, 

whereas the ectopic expression of dominant negative mutant of Sp1 or Sp3 did not cause this 

effect. Moreover, the Sp protein inhibitors mithramycin-A and tolfenamic acid 

dose-dependently blocked NaBu-induced PKCδ promoter activity. In addition, 

transcriptional activity of Sp1 and Sp3 was significantly induced by NaBu in a one-hybrid 

system. By utilizing the same assay, we found that the B domain and the glutamine-rich 

segment of the A domain of Sp1 and Sp3 (amino acids Sp1 146-494; Sp3 81-499) was 

essential for the NaBu-induced transactivation of the PKCδ promoter. Transient 

overexpression of p300 or CBP potentiated NaBu-induced transactivation potential of Sp1 or 

Sp3, whereas transient overexpression of HDACs attenuated this effect, suggesting that 

p300/CBP and HDACs may act as co-activators or co-repressors in response to NaBu 

exposure. Next, we evidenced a novel association between α-synuclein, a protein associated 

with the pathogenesis of Parkinson’s diseases (PD), and PKCδ, in which α-synuclein 

negatively modulates the p300- and NFκB-dependent transactivation to down-regulate 

proapoptotic kinase PKCδ expression and thereby protects against apoptosis in dopaminergic 

neuronal cells. Stable-expression human wild-type α-synuclein at physiological levels in 
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dopaminergic neuronal cells resulted in an isoform-dependent transcriptional suppression of 

PKCδ expression without changes in the stability of mRNA and protein or DNA methylation. 

The reduction in PKCδ transcription was mediated, in part, through the suppression of 

constitutive NFκB activity targeted at two proximal PKCδ-promoter κB sites. This occurred 

independently of NFκB/IκBα nuclear translocation, but was associated with decreased 

NFκB-p65 acetylation. Also, αsyn reduced p300 levels and its histone acetyl-transferase 

(HAT) activity, thereby contributing to diminished PKCδ transactivation. Importantly, 

reduced PKCδ and p300 expression also were observed within nigral dopaminergic neurons 

in αsyn transgenic mice. Finally, we examined whether environmental neurotoxicant 

exposure alters PKCδ expression. Manganese exposure potently induced PKCδ levels in 

primary striatal neurons and NIE115 cells. The use of primary neurons from mice lacking 

PKCδ subsequently demonstrated that the level of PKCδ plays a critical role in 

manganese-induced neurodegeneration. Experiments on manganese-exposed mice also 

confirmed the action of manganese in upregulation of PKCδ. Using NIE115 cells, we further 

elucidated the mechanisms underlying the manganese-induced up-regulation of PKCδ. We 

identified that NFκB is essential for the manganese-mediated expression of PKCδ in NIE115 

cells. Taken together, our studies show that 1) PKCδ promoter contains multiple positive and 

negative cis-acting elements, and both Sp family proteins and NFκB function as essential 

trans-acting factors to regulate PKCδ transcription, 2) epigenetic mechanisms including 

DNA methylation and histone acetylation appear to have a direct role in PKCδ expression, 3) 

PKCδ expression can be induced by parkinsonian environmental toxin, manganese, or 

negatively regulated by the PD-related gene, α-synuclein. 
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CHAPTER I: GENERAL INTRODUCTION 

 

Dissertation Organization 

 

 This dissertation is organized in six chapters and some chapters are written in a 

journal paper format. The first chapter, General Introduction, includes an introduction 

describing the objectives of my research subjects and a literature review, which provides 

background information related to the present investigation. The references cited in this 

chapter are listed at the end of the dissertation. In the following four chapters (II-V) are four 

research papers, entitled “Transcriptional regulation of protein kinase Cδ, a pro-apoptotic 

kinase: implications of oxidative damage in dopaminergic neurodegeneration,” “Histone 

acetylation upregulates PKCδ via Sp-dependent transcription in dopaminergic neurons: 

relevance to epigenetic mechanisms of neurodegeneration in Parkinson’s Disease,” 

“Alpha-synuclein negatively regulates PKCδ expression to suppress apoptosis in 

dopaminergic neurons by reducing p300 HAT activity,” and “Increased expression of 

pro-apoptotic kinase PKCδ following exposure to manganese: implications for 

gene-environment interactions in neurodegeneration.” These papers will be submitted for 

publication in the Journal of Biological Chemistry, the Journal of Biological Chemistry, the 

Journal of Neuroscience, and Environmental Health Perspectives, respectively. The list of 

references cited is placed at the end of each chapter. Chapter VI, General Conclusion, 

summarzies and discusses the entire dissertation. In this part, the future perspectives also are 

presented.  
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Introduction 

 

 Parkinson’s disease (PD) is the most frequently occurring movement disorder in the 

United States. It results from the progressive degeneration of the dopaminergic neurons in the 

substantia nigra pars compacta (SNc) and the associated dopamine deficiency in the striatum. 

Although the relative contribution of genetic and environmental risk factors in PD has not 

been fully elucidated, there is ample evidence from the last three decades suggesting that 

oxidative stress, mitochondrial dysfunction, protein aggregation and impairment of 

ubiquitin-proteasome system (UPS), and apoptosis may contribute to PD pathogenesis 

(Dawson and Dawson, 2003). In particular, a key role for kinase signaling in the PD 

neurodegenerative process is increasingly being recognized. Mutations in the mitochondrial 

kinase PTEN-induced kinase 1 (PINK1) (Valente et al., 2004b) and the leucine-rich repeat 

kinase 2 (LRRK2) (Paisan-Ruiz et al., 2004; Zimprich et al., 2004)  have been reported to 

be associated with familial forms of PD. Alterations in kinase activity of PINK1 or LRRK2 

are thought to account for, at least in part, the pathogenic effects of their PD-linked mutations 

(Cookson et al., 2007); suggesting that aberrant protein phosphorylation may represent a 

molecular mechanism underlying PD. In addition, data obtained in neurotoxin, 

environmental and genetic models of PD have suggested an important role for a number of 

redox-sensitive kinase signaling pathways in the pathogenesis of PD (Harper and Wilkie, 

2003; Kanthasamy et al., 2003a; Peng and Andersen, 2003; Inglis et al., 2009). Our 

laboratory previously reported that the kinase, protein kinase Cδ (PKCδ), functions as an 

oxidative stress-sensitive kinase, and that its persistent activation by caspase-3-mediated 

proteolytic cleavage has a promotional role in multiple models of PD-associated 
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dopaminergic neurodegeneration (Anantharam et al., 2002; Kaul et al., 2003; Kitazawa et al., 

2003; Kaul et al., 2005b; Latchoumycandane et al., 2005). Follow-up analysis demonstrated 

that blocking of the PKCδ signaling pathway by administration of pharmacological inhibitors 

of PKCδ or expression of a dominant negative PKCδ kinase or depletion of PKCδ via 

siRNA-mediated knockdown has been shown to effectively prevent neurotoxin-induced 

dopaminergic neurodegeneration in vivo and in vitro (Yang et al., 2004; Kanthasamy et al., 

2006; Zhang et al., 2007a), suggesting that PKCδ is a promising candidate for therapeutic 

intervention in PD. Although both the molecular bases of PKCδ activation and its roles in 

neurodegeneration have been the subject of intense investigation, little is known about the 

regulation of PKCδ expression. Thus, the primary objective of this dissertation is to 

systematically investigate the cellular and molecular mechanisms underlying the 

transcriptional regulation of PKCδ in neuronal cells. We also are interested in the effect of 

epigenetic modifications of the PKCδ promoter on its transcriptional regulation and the 

subsequent impact of alterations in PKCδ expression on the functional role of PKCδ in 

parkinsonian neurodegeneration. A better understanding of the regulation of PKCδ 

expression might help to identify ways to control PKCδ activity and alleviate PKCδ 

pro-apoptotic function in PD. Meanwhile, further studies on the potential crosstalk between 

PKCδ expression and genetic risk factors as well as environmental risk factors involved in 

PD pathology, particularly the α-synuclein and manganese, also have been extended in the 

dissertation. Taken together, these studies will provide useful insights for understanding the 

pathogenesis of PD and may be beneficial for novel drug targets selection and therapeutic 

intervention.  
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Literature Review 

 

 This section provides background information related to the studies described in the 

dissertation: (1) Parkinson’s disease; (2) Etiology of Parkinson’s disease; (3) Pathogenesis of 

Parkinson’s disease; (4) Protein kinase C delta. 

 

1.1 Parkinson’s disease 

 Parkinson’s disease (PD) was first described in medical literature by James Parkinson 

in 1817 (Pearn and Gardner-Thorpe, 2001). This disease is estimated to affect 100 to 150 per 

100,000 individuals, making it the second most common neurodegenerative disease after 

Alzheimer’s disease (AD) (Jankovic, 1988; Tanner, 1992b).  

 

1.1.1 Epidemiology  

 Accurate measurements of the incidence of PD are relatively difficult due to the rarity 

of the autopsy data and the variability in diagnostic criteria and case ascertainment methods 

in studies (Nussbaum and Polymeropoulos, 1997). The most consistent risk factor for 

developing PD is increasing age, with approximately 1% of the population above the age of 

65 being affected, rising to 4-5% of the population over 85 years (Van Den Eeden et al., 2003; 

Farrer, 2006). The mean age of onset of PD is approximately 62 years, although up to 10% of 

PD cases occur before the age of 40 (Rajput, 2001). Apart from age, epidemiological studies 

also have shown that the prevalence of PD varies by gender and race/ethnicity (Van Den 

Eeden et al., 2003). PD occurs more frequently in men than in woman (Twelves et al., 2003; 
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Wooten et al., 2004; Taylor et al., 2007). The reasons for the gender differences are not clear, 

but there are several lines of evidence suggesting that they are at least in part under the 

influence of genetic factors (Burn, 2007; Taylor et al., 2007). PD also may be more common 

in people of European ancestry living in Europe and North America, however, the evidence 

is far from clear (Van Den Eeden et al., 2003).  

 

1.1.2 Clinical phenotype  

 The onset of symptoms in PD is insidious, and the clinical course is steadily 

progressive (Farrer, 2006). Its main clinical phenotype is parkinsonism, a neurological 

syndrome characterized by severe motor symptoms including resting tremor, rigidity, 

bradykinesia, and postural instability caused by striatal dopamine deficiency or direct striatal 

damage. PD is the most common form of parkinsonism, making up approximately 80% of 

total cases (Farrer, 2006). In addition to the motor deficits, patients with PD often exhibit a 

number of non-motor symptoms as well, such as autonomic dysfunction, cognitive and 

neurobehavioral disorders, and sensory and sleep abnormalities (Jankovic, 2008). 

Constipation, daytime sleepiness, and an impaired sense of smell can be early signs of PD 

(Abbott et al., 2005; Abbott et al., 2007; Haehner et al., 2007). Based on the predominance of 

the various cardinal symptoms, age of onset, and progression rate, PD has been classified 

into either a tremor-predominant form that displays a slow rate of progression and is often 

observed in younger people, or a postural instability and gait disorder (PIGD) subtype that is 

more apt to develop in older people (>70 years old) and is characterized by rigidity, 

bradykinesia, and gait disturbance (Obeso et al., 2010).  
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Figure 1: Neuronal loss associated with depigmentation in SNc of 
PD patients. This figure is obtained from: 
http://www.gwc.maricopa.edu/class/bio201/parkn/parkn1.jpg. 

1.1.3 Neuropathological phenotype 

 The pathological hallmark of PD is the progressive and selective loss of dopaminergic 

neurons (Figure 1) within the substantia nigra pars compacta (SNc), leading to the marked 

depletions of dopamine, its 

metabolites including 

homovanillic acid (HVA) and 

3,4-dihydroxyphenylacetate 

(DOPAC), its biosynthetic 

enzyme tyrosine hydroxylase 

(TH), and the dopamine 

transporter in the striatum, as 

well as in the SNc. Such depletions are believed to underlie many of the clinical 

manifestations of PD (Crossman, 1989; Dunnett and Bjorklund, 1999; Zhang et al., 2000a). 

The dopaminergic neuronin the SNc, sometimes referred to as the A9 cell group that forms 

the nigrostriatal dopaminergic pathway, contain cytoplasmic neuromelanin, a pigment that 

gives these nuclei a macroscopical black appearance (Forno, 1996). The cell bodies of these 

neurons are located in the SNc, while their axons run along the medial forebrain bundle and 

project primarily to the putamen in the dorsal striatum. At the onset of symptoms, 

approximately 60% of the SNc dopaminergic neurons correlated with depigmentation (Figure 

1) in SNc and about 80% of the putamen dopamine have been lost (Kirik et al., 1998). 

Another important pathological feature for PD is the formation of round eosinophilic 

inclusion bodies that contain aggregates of many different proteins and lipids in the 

cytoplasm of neurons (Lewy bodies [LB]) and thread-like proteinaceous deposits within 
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Figure 2: Lewy bodies (A) stained with haematoxylin/eosin 
and α-synuclein-positive Lewy neurites (B) in SNc of PD 
brains. This figure is adapted from (Werner et al., 2008). 

neurites (Lewy neurites [LN]) in the surviving dopaminergic neurons (Figure 2) (Werner et 

al., 2008). The mechanism underlying the LB or LN formation, as well as their pathogenic 

relevance to PD, however, is still controversial. In addition to the dopaminergic neurons in 

SNc, neurodegeneration and LB formation also are observed in noradrenergic neurons of the 

locus coeruleus and dorsal vagal nucleus, serotonergic neurons in the dorsal raphe, and 

cholinergic neurons within the 

nucleus basalis of Meynert and 

dorsal motor nucleus of vagus nerve, 

as well as in the cerebral cortex, 

olfactory bulb, and autonomic 

nervous system (Jellinger, 1990; 

Quinn, 1995; Hatano et al., 2009). 

Impairment of these neurochemical 

systems significantly contributes to 

some of the non-motor symptoms of PD (Deumens et al., 2002). For example, loss of 

cholinergic neurons in the nucleus basalis of Meynert is found to relate to cognitive 

impairment, similar to that found in AD (Whitehouse et al., 1983). Furthermore, the damages 

to the dorsal motor nucleus of the vagus nerve were thought to lead to constipation, while the 

changes of the coeruleus and raphe nuclei may underlie the symptoms of depression and 

sleep disturbances. The pathophysiologic progression of PD is thought to begin in the regions 

of the dorsal motor nucleus of the vagus and the olfactory bulb, progressing rostrally along 

the brain stem to affect the locus coeruleus and raphe nuclei, and then extending to the 

substantia nigra and ultimately involving the cortex as the disease advances (Braak et al., 
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2003; Bonuccelli and Del Dotto, 2006). However, this proposal has been controversial and 

remains to be proven (Burke et al., 2008; Lees, 2009).  

 

1.1.4 Pharmacological treatment 

 Unfortunately, there is no cure for PD. All current treatments for PD are symptomatic; 

none slow or prevent neuronal death progression in the dopaminergic system (Obeso et al., 

2010; Olanow, 2004a). Current standard treatment therapy is based on levodopa, one of the 

intermediate molecules in the genesis of dopamine (Clarke, 2004). Although the dopamine 

replacement therapy with levodopa is initially effective for most patients to improve PD 

symptoms, long-term manipulation of levodopa can lead to disabling side effects such as 

wearing-off, dyskinesias, and dystonia. Moreover, the clinical efficacy often declines as the 

disease advances (Lewitt, 2008). There also is a concern that levodopa may be toxic in vivo 

and may therefore induce further damage to the remaining nigrostriatal neurons in 

levodopa-treated patients with PD (Davie, 2008). Besides alleviating motor symptoms, new 

PD treatment strategies should be designed to slow and ultimately halt disease progression or 

to reduce the growing prevalence of non-motor disease symptoms (Obeso et al., 2010).  

 

1.2 Disease etiology  

 Despite decades of research, the specific etiology of PD remains to be fully 

understood. There is a general agreement that PD has a complex and multifactorial etiology 

involving different genetic, cellular and environmental factors that may independently or 

concomitantly contribute for the development of PD (Obeso et al., 2010). The majority 

(approximately 90-95%) of PD cases are sporadic, while monogenic forms of PD only 
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account for 5-10% of all cases, suggesting that nongenetic factors are more important risk 

factors.  

1.2.1 Environmental risk factors  

 Epidemiological studies indicated that a variety of environmental factors including 

exposure to pesticides, herbicides, trace metals, industrial chemicals, wood pulp mills, 

farming, well-water consumption, rural residence, and head trauma may confer an increased 

risk of PD (Olanow and Tatton, 1999; Davie, 2008). Furthermore, a number of additional 

endogenous toxins have been associated with the development of PD, including dopamine 

and its metabolites, tetrahydroisoquinolines, and beta-carbolines (Olanow and Tatton, 1999; 

Dauer and Przedborski, 2003). Normal metabolism of dopamine generates harmful reactive 

oxygen species (ROS) such as hydrogen peroxide, superoxide radical, and hydroxyl radical 

(Stokes et al., 1999). A second mechanism responsible for cytotoxic potential of dopamine 

involves oxidation of the neurotransmitter that produces a reactive dopamine quinone 

molecule (Smythies and Galzigna, 1998). The resulting reactive quinones have been 

demonstrated to covalently modify and damage cellular maromolecules (Stokes et al., 1999). 

In addition to these factors that increase PD risk, potentially protective factors such as 

cigarette smoking, alcohol and caffeine intake, and hormone replacement have been noted 

(Benedetti et al., 2000; Allam et al., 2004; Currie et al., 2004; Popat et al., 2005), although it 

is not clear how these agents influence disease risk. The only consistent environmental factor 

associated with the development of the disease is cigarette smoking; the prevalence decreases 

by approximately 60% in smokers with a dose-response relationship between cigarette 

consumption and PD incidence (Hernan et al., 2002).  
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1.2.1.1 MPTP  

 Although environmental risk factors for PD have gained considerable attention during 

the 20th century, definitive proof of the implicatiom of any specific agent as a cause of PD is 

still missing (Hardy, 2006). The most compelling evidence emerged with discovery of the 

synthetic heroin analog, 1,2,3,6-methyl-phenyl-tetrahydropyridine (MPTP) in 1982 when 

several drug users in California developed subacute onset of severe parkinsonism (Langston 

et al., 1983). It is now well established that MPTP induces, in humans, nonhuman primates, 

and mice, irreversible and severe motor abnormalities replicating all of the clinical features 

of PD, including tremor, rigidity, bradykinesia, and postural instability. Neuropathological 

data in both primates and mice indicate that MPTP primarily damages the nigrostriatal 

dopaminergic pathway in a pattern similar to that seen in PD patients, including a preferential 

loss of dopaminergic neurons in the SNc and a significant reduction in striatal dopamine 

content (Beal, 2001). As in PD, the toxin also induces additional neurodegeneration in the 

locus coeruleus (Varastet et al., 1994). Moreover, reminiscent of PD in humans, an excellent 

response to levodopa and dopamine receptor agonists and the development of motor 

complications after long-term manipulation of levodopa were observed in MPTP-treated 

primates (Dauer and Przedborski, 2003). Therefore, MPTP administration has been 

extensively used as a toxicant-induced PD model for studying the disease. However, this 

toxin model normally lacks significant LB formation for reasons that remain unclear (Forno 

et al., 1993), suggesting that LB formation may be not required to evoke nigral cell death.   
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1.2.1.2 Paraquat and rotenone  

 After MPTP, several widely used pesticides, particularly paraquat and rotenone, have 

been extensively examined for their possible involvement in PD because of their 

toxicological and structural similarities to MPTP and its toxic metabolite, MPP+ (Bove et al., 

2005; Brown et al., 2006). The toxicologic evidence in laboratory animals suggests that with 

certain routes of administration, both paraquat and rotenone can lead to a Parkinson-like 

syndrome, selective SNc dopaminergic neuron degeneration, and α-synuclein-positive 

cellular inclusions that resemble LB microscopically (Brooks et al., 1999; Betarbet et al., 

2000; McCormack et al., 2002). Moreover, epidemiological studies have suggested exposure 

to paraquat or rotenone may confer an increased risk for PD (Liou et al., 1997; Brown et al., 

2006; Hancock et al., 2008). Despite remaining uncertainties and data gaps, the overall 

evidence supports the conclusion that pesticide exposures can cause PD or parkinsonism in 

some people.  

 

1.2.1.3 Metals  

 Exposure to metals, such as lead, manganese, iron, copper, and others, has also been 

investigated as a risk factor for PD based on some occupational studies (Tanner, 1992a; 

Rybicki et al., 1993; Gorell et al., 1999; Tanner et al., 1999). Among these heavy metals, 

manganese is of special concern due to its long-known toxicity and ability to produce a 

severe and degenerative neurologic condition that resembles PD, known as manganism or 

manganese-induced parkinsonism (Huang et al., 1989; Mergler et al., 1994). This disease, 

characterized by excessive manganese deposition in basal gangalia of the central nervous 

system, begins with a variety of psychiatric disturbances (Roth, 2006), such as emotional 
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liability, mania, compulsive or violent behavior, hallucinations, and loss of appetite, while 

motor symptoms including bradykinesia, rigidity, and dystonia are manifested at the latter 

stages of the disorder (Liu et al., 2006b). Although symptoms of manganism are similar to 

those associated with PD, they are distinct in both clinical presentation and pathology (Calne 

et al., 1994; Erikson and Aschner, 2003; Jankovic, 2005). Clinically, there is usually a 

relative absence of resting tremor, more frequent dystonia, severe gait disturbance with 

difficulty in backward walking, and a poor response to levodopa in patients with 

manganese-induced parkinsonism, while resting tremor, asymmetry, and a good response to 

levodopa are normally present in PD (Lu et al., 1994; Pal et al., 1999; Erikson and Aschner, 

2003; Olanow, 2004b). Unlike PD, which is associated with preferential dopaminergic 

neurodegeneration in the SNc and the presence of LB inclusions in surviving neurons, 

pathologically manganese primarily causes neuronal loss in the globus pallidus and striatum 

with no formation of LBs (Yamada et al., 1986; Olanow, 2004b; Aschner et al., 2009b). 

Moreover, the damages to other regions specifically affected in PD, including the locus 

coeruleus, the nucleus basalis of Meynert, and the dorsal motor nucleus of vagus nerve, are 

not observed in manganese-intoxicated patients (Olanow, 2004b; Jankovic, 2005). In humans, 

manganese toxicity primarily has been observed in occupational settings, such as manganese 

mines and the manufacturing facilities producing dry batteries, steel, aluminum, welding 

metals, and organochemical fungicides (Keen et al., 2000). In addition, manganese 

neurotoxicity has been reported in individuals receiving total parenteral nutrition (Bertinet et 

al., 2000) and in patients with chronic liver failure (Hauser et al., 1994; Krieger et al., 1995). 

Other sources of excessive manganese exposure include well water rich in manganese 

(Wasserman et al., 2006), soy-based infant formulas (Lonnerdal, 1994; Krachler and 
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Rossipal, 2000), as well as atmospheric manganese resulting from the addition of 

methylcyclopentadienyl manganese tricarbonyl (MMT) to gasoline (Finkelstein and Jerrett, 

2007; Walsh, 2007; Santamaria, 2008; Aschner et al., 2009b). To date, pathogenic 

mechanisms underlying manganism are not fully understood but possibly involve increased 

oxidative stress and excitotoxicity (Brouillet et al., 1993; Chen and Liao, 2002), attenuation 

of astrocytic glutamate uptake (Hazell and Norenberg, 1997; Erikson and Aschner, 2003), 

and upregulation of binding sites for peripheral benzodiazepine receptor ligands (Hazell et 

al., 1999). Chelation therapy with ethylene-diamine-tetraacetic acid (ETA) has been used as 

the primary treatment for manganese intoxication (Discalzi et al., 2000; Herrero Hernandez 

et al., 2006), but in some cases neurological symptoms progressed even after many years of 

cessation of chronic exposure (Rosenstock et al., 1971; Cook et al., 1974; Calne et al., 1994). 

 

1.2.2 Genetic risk factors  

 Over the past decade, the role of genetic factors in PD has been the subject of intense 

investigation. Although purely genetic forms of PD appear to be rare, accounting for only 

5-10% of the overall PD population, understanding the genetic variations impacting 

dopamine neurons will accelerate the identification of the underlying disease mechanisms 

and provide the rational for developing new therapeutic approaches to slow or halt the 

disease progression. To date, more than 15 loci (PARK 1-15) and 15 causative genes (Table 

1) have been mapped and found to be linked to familial forms of PD (see update at PD Gene: 

http://www.pdgeen.org) (Gasser, 2007; Klein and Schlossmacher, 2007; Hatano et al., 2009). 

Polymorphisms of these genes are being further examined in idiopathic PD patients. Among 

them, PARK1 and PARK4/SNCA, PARK5/ubiquitin carboxyl-terminal esterase L1 
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(UCHL1), PARK8/leucine-rich repeat kinase 2 (LRRK2), and another currently unknown 

gene PARK3 are shown to cause dominantly inherited parkinsonism (Klein and 

Schlossmacher, 2006; Gasser, 2007; Hatano et al., 2009); Four genes, PARK2/parkin, 

PARK6/PTEN-induced putative kinase 1 (PINK1), PARK7/DJ-1, and recently, 

PARK9/ATPase type 13A2 (ATP13A2) are shown to cause recessively inherited 

parkinsonism (Ramirez et al., 2006; Gasser, 2007; Hatano et al., 2009).  

Table 1: Summary of PD-associated genes 

EO: early onset, DLB: Dementia with Lewy bodies, LB: Lewy bodies. Classic PD refers to the late-onset clinical 
idiopathic PD phenotype.  

 

1.2.2.1 α-Synuclein 

 The SNCA gene coding for the protein alpha-synuclein (α-synuclein) was the first 

gene implicated in the familial forms of PD when a missense mutation A53T within the gene 

Locus Chromosome Gene Inheritance and phenotype 

PARK1 4q21-q23 SNCA Dominant, DLB features 

PARK2 6q25.2-q27 Parkin Recessive, EO, no LB 

PARK3 2p13 Unknown Dominant, Classic PD  

PARK4 4q21 SNCA (triplication) Dominant, EO with DLB features 

PARK5 4p13 UCH-L1 Classic PD 

PARK6   1p36.2 PINK1 Recessive, EO, slow progression with LB 

PARK7 1p36 DJ1 Recessive, EO, slow progression 

PARK8 12q12 LRRK2   Dominant, Classic PD  

PARK9 1p36 ATP13A2   Recessive, Atypical-Kufor-Rakeb syndrome 

PARK10 1p32 Unknown Classic PD 

PARK11 2p37.1 GIGYF2   Dominant, Classic PD 

PARK12 Xq21-q25 Unknown   Classic PD 

PARK13 2p13.1 HTRA2/OMI   Classic PD 

PARK14 22q13.1 PLAG26 Recessive 

PARK15 22q12-q13 FBXO7 Recessive 

   - 17q21.1 MAPT  

   - 1q21 GBA Parkinsonism with LB 

   - 5q23.1-q23.3 Synphilin-1 Classic PD 

   - 2q22-q23 NR4A2/Nurr1 Classic PD 
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was isolated from a large Italian-Greek family with autosomal dominant PD with a relatively 

earlier age at onset (50 years) and rapid disease progression (Polymeropoulos et al., 1996; 

Polymeropoulos et al., 1997). Subsequent studies identified two further point mutations 

(A30P and E46K) in the SNCA gene in a German and Spanish family, respectively (Kruger et 

al., 1998; Zarranz et al., 2004). All these families had clinical and pathological features 

similar to those observed in sporadic PD and responded to levodopa medication, although 

some atypical phenotypes also have been observed. For example, cognitive decline and 

severe central hypoventilation have been noted in several A53T-assoacited patients 

(Polymeropoulos et al., 1997; Spira et al., 2001), and interestingly, the patients with the 

E46K mutation exhibited some clinical features typical of dementia with Lewy bodies (DLB) 

in addition to parkinsonism (Zarranz et al., 2004). These mutations are exceedingly rare and 

have not been found in sporadic PD. Apart from these missense substitutions, genomic 

rearrangements including duplication and triplication of the wild-type SNCA gene were also 

reported to cause autosomal-dominantly inherited PD in several families (Singleton et al., 

2003; Chartier-Harlin et al., 2004; Ibanez et al., 2004; Nishioka et al., 2006; Ahn et al., 

2008). In contrast to the families with the gene triplications, who were affected in their 

thirties and often presented with a severe phenotypes, such as rapid progression, early 

dementia, and reduced lifespan, the clinical phenotype in patients with SNCA duplications 

resembles more closely those of sporadic PD patients (Chartier-Harlin et al., 2004; Fuchs et 

al., 2007). Interestingly, a Rep1 microsatellite polymorphism located on the SNCA gene 

promoter (Maraganore et al., 2006) and several single nucleotide polymorphisms (SNPs) at 

the 5’ and 3’ regions have been associated with higher risk for sporadic PD(Mueller et al., 

2005; Mizuta et al., 2006; Winkler et al., 2007; Pankratz et al., 2009). Although the cases of 
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familial PD associated with α-synuclein mutations are extremely rare (Lee and Trojanowski, 

2006), a significant role for α-synuclein in the pathogenesis of PD is highlighted by the 

identification of α-synuclein as the major component of the LBs in both sporadic and familial 

PD (Spillantini et al., 1997; Spillantini et al., 1998; Takeda et al., 1998; Bayer et al., 1999). 

Additionally, α-synuclein-positive inclusions also are prominent in a range of other 

neurodegenerative diseases, classified as synucleinopathies, including diffuse Lewy body 

dementia (DLBD), Lewy body variant of Alzheimer disease (LBVAD), and multiple system 

atrophy (MSA) (Spillantini et al., 1998; Takeda et al., 1998; Wakabayashi et al., 1998; Bayer 

et al., 1999). Ultrastructurally, LBs are composed of fine filaments that are mainly made of 

fibrillar  α-synuclein, an aggregated form of the protein (Schulz-Schaeffer, 2010; Dickson, 

2002), suggesting that abnormalities of α-synuclein accumulation might be crucial in the 

pathophysiology of PD. It should be pointed out however, that whether LBs are neurotoxic or 

cytoprotective remains debatable (Maries et al., 2003; Jellinger, 2009; Power and Blumbergs, 

2009). In spite of the potentially deleterious effects, LB formation might be part of a normal 

cellular process to protect neuron by sequestering misfolded or incompletely degraded 

proteins from the cell (Mouradian, 2002; Tanaka et al., 2004; Power and Blumbergs, 2009).  

 As a 140 amino acid small protein, α-synuclein is abundantly expressed as a cytosolic 

and lipid-binding phosphoprotein throughout the vertebrate brain (Vekrellis et al., 2004). 

This protein belongs to the synuclein protein family additionally including β-synuclein and 

γ-synuclein (George, 2002). All synucleins have a six or seven 11-residue imperfectly 

conserved repeats distributed throughout most of the N-terminal region and a variable 

C-terminal hydrophilic tail (George, 2002). Structurally, α-synuclein is usually subdivided 

into three distinct domains (Figure 3): (1) the N-terminal amphipathic domain (residues 1-65) 
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Figure 3: Protein domains of huamn α-synuclein. This figue is 
adapted and modified from (Recchia et al., 2004). 

including seven copies of 11-residue imperfect repeat with a hexameric core motif 

(KTKEGV), (2) the central hydrophobic domain (residues 66-95) that is known as the 

non-amyloid-β component (NAC) domain, and (3) the acidic C-terminal glutamate-rich 

domain (residues 96-140) (Recchia et al., 2004; Beyer, 2006).  The highly conserved 

N-terminal repeat domain is thought to confer the lipid-binding properties for direct 

membrane interaction 

(Maroteaux and Scheller, 

1991; Jensen et al., 1998; 

Jo et al., 2000; Fortin et al., 

2004; Kubo et al., 2005). 

This domain shares a 

natively unfolded structure 

in solution, but under certain 

conditions it can shift to an α-helical conformation (Clayton and George, 1998; Kahle et al., 

2002). Several studies indicate that association with lipids stabilizes α-synuclein in an 

α-helical structure (Jo et al., 2000; Perrin et al., 2000; Eliezer et al., 2001; Chandra et al., 

2003; Jao et al., 2004) accompanied by extensive aggregation and fibril formation (Giasson 

et al., 1999; Conway et al., 2000a; Serpell et al., 2000; Lee et al., 2002a; Barghorn et al., 

2004), suggesting that the membrane-associated conformation of α-synuclein may contribute 

to Lewy body pathology in neurodegenerative diseases. The NAC domain is highly 

amyloidogenic and appears to be essential for α-synuclein aggregation, which confers to the 

protein the ability to undergo a conformational change from random coil to β-sheet structure 

(Giasson et al., 2001; Recchia et al., 2004), resulting in fibril formation that are similar to 
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that formed from other amyloidogenic proteins (Giasson et al., 2001; el-Agnaf and Irvine, 

2002). The role of NAC domain in α-synuclein aggregation also was supported by the 

observation that the highly homologous β-synuclein, which lacks 11 central hydrophobic 

residues, fails to aggregate (Biere et al., 2000). The C-terminal acidic tail has no distinct 

structural propensity but has a strong negative charge (George, 2002) that is believed to 

positively regulate solubility of α-synuclein (Recchia et al., 2004). Both in vitro and in vivo 

studies have suggested an inhibitory role for this region on aggregation of α-synuclein 

(Crowther et al., 1998; Serpell et al., 2000; Murray et al., 2003; Periquet et al., 2007).   

 Little is known about the physiological functions of α-synuclein. However, given the 

predominant synaptic location of α-synuclein, it may have a role in synaptic plasticity. In 

support of this idea, an avian homologue of α-synuclein, synelfin is transiently expressed 

during early stages of song learning in zebra finch (George et al., 1995). α-Synuclein can 

bind to acidic phospholipid vesicles (Davidson et al., 1998) and can also function as a potent 

inhibitor of phospholipase D by physical interaction (Jenco et al., 1998), suggesting a 

putative role for α-synuclein in regulation of synaptic vesicle recycling. Indeed, depletion of 

α-synuclein in cultured hippocampal neurons or mice exhibited a significant reduction in the 

distal pool of synaptic vesicles (Murphy et al., 2000; Cabin et al., 2002). Furthermore, 

significantly enhanced dopamine release at nigrostriatal terminals in response to paired 

electrical stimuli was observed in α-synuclein knockout mice, suggesting that α-synuclein 

might be an important regulatory component for dopaminergic neurotransmission 

(Abeliovich et al., 2000). Additionally, Ostrerova and colleagues observed that α-synuclein 

shares a 40% homology with a chaperone protein 14-3-3, suggesting that α-synuclein may 

function as a chaperone protein (Ostrerova et al., 1999). Furthermore, they also have shown 
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that α-synuclein is able to bind to and inhibit the activity of protein kinase C (PKC) 

(Ostrerova et al., 1999). PKC plays a central role in the signal transduction pathways that 

control various cellular processes, and therefore α-synuclein may also be involved in signal 

transduction. Finally, in addition to neurotoxicity, there is accumulating evidence suggesting 

that native α-synuclein plays a beneficial role in the prevention of neurodegeneration in vitro 

and in vivo (da Costa et al., 2000; Alves Da Costa et al., 2002; Seo et al., 2002; Jensen et al., 

2003; Manning-Bog et al., 2003; Albani et al., 2004; Sidhu et al., 2004; Chandra et al., 2005; 

Leng and Chuang, 2006; Monti et al., 2007). It has been shown, for example, that 

overexpression of either wild-type human α-synuclein or its A53T mutant form in mice 

completely protected against paraquat-induced neurodegeneration (Manning-Bog et al., 

2003). Another in vivo work by Chandra and colleagues revealed that α-synuclein can 

cooperate with the synaptic co-chaperone, cysteine-string protein-α (CSPα), to protect 

against injury at nerve terminals (Chandra et al., 2005). However, the precise mechanisms 

involved in α-synuclein neuroprotective action remains to be fully defined.   

 Although the process of α-synuclein fibrillization appears to be the key pathogenic 

event in PD, the mechanism underlying α-synuclein aggregation is still poorly understood. 

Current hypothesis for α-synuclein fibrillogenesis is that natively or disordered α-synuclein 

monomers become soluble oligomers, also referred to as protofibrils, which form stable 

amyloid-like fibrils and eventually aggregate into LB inclusions (Maries et al., 2003). 

Supporting this view is the observation that in vitro wild-type α-synuclein itself can 

self-aggregate in solution to form amyloid-like fibrils (Recchia et al., 2004; Moore et al., 

2005) and that the oligomeric species of α-synuclein have been observed in human brain 

(Sharon et al., 2003). However, it is still not clear which species is responsible for the 
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neurotoxicity (Taymans and Cookson, 2010; Cookson, 2005). Some investigators believe 

that the oligomers but not the fibrils are toxic based on the in vitro finding that both A53T 

and A30P mutants promote oligomers formation, but only the A53T mutant promotes the 

formation of fibrils (Conway et al., 1998; Conway et al., 2000b). However, transgenic 

overexpression of the protofibrillogenic A30P mutant α-synuclein failed to display 

neurodegeneration (Lee et al., 2002b), suggesting that oligomers may not be the primary 

toxic species. Several mechanisms underlying abnormal α-synuclein accumulation have been 

proposed, including mitochondrial dysfunction, oxidative damage, failure of the 

ubiquitin-proteasome system, and posttranslational modifications (Moore et al., 2005).  

 

1.2.2.2 LRRK2  

 The PARK8 locus encompassing LRRK2 gene was initially mapped in a large 

Japanese family with late-onset autosomal dominant PD (Funayama et al., 2002). 

Subsequently, two groups concurrently identified mutations within the LRRK2 gene as the 

causative gene for PARK8-linked familial PD (Paisan-Ruiz et al., 2004; Zimprich et al., 

2004). Since then, six point mutations with definite pathogenicity (R1441C, R1441G, 

Y1699C, G2019S, I1122V and I2020T) and numerous putative pathogenic mutations have 

been identified in LRRK2 gene; both in familial and sporadic cases of PD (Cookson, 2005; 

Funayama et al., 2005; Gilks et al., 2005; Nichols et al., 2005; Mata et al., 2006a; Tomiyama 

et al., 2006; Lu and Tan, 2008; Hatano et al., 2009; Haugarvoll and Wszolek, 2009). LRRK2 

mutations are the most frequently known cause of autosomal dominant form of familial PD 

(Klein and Schlossmacher, 2007; Mizuno et al., 2008). The known LRRK2 variants are 

estimated to account for approximately 2% of sporadic and 10% of familial PD cases (Berg 
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et al., 2005; Di Fonzo et al., 2005; Mata et al., 2006b). In particular, the LRRK2 G2019S 

mutation is the best studied and most frequent substitution in the Caucasian population, 

accounting for approximately 0.5-2.0% of apparently sporadic and 5-6% of familial PD cases 

(Di Fonzo et al., 2005; Farrer et al., 2005; Gilks et al., 2005; Kachergus et al., 2005; Nichols 

et al., 2005; Tomiyama et al., 2006). However, the G2019S mutation frequency appears to 

vary with ethnicity (Tan et al., 2005; Lesage et al., 2006), with an extremely high frequency 

(30-40%) of familial and sporadic PD patients from North Africa (Lesage et al., 2006) and 

10-30% of Ashkenazi Jews (Ozelius et al., 2006), but very rare found in Asia, south Africa 

and some European countries (Tan et al., 2005; Xiromerisiou et al., 2007; Okubadejo et al., 

2008). Additionally, two polymorphic mutations R1628P and G2385R have been found to 

confer susceptibility to PD in Asian populations (Funayama et al., 2007; Ross et al., 2008). 

The penetrance of G2019S-associated disease appears to be age-dependent (Kachergus et al., 

2005), but variations are reported in subsequent reports (Lesage et al., 2005; Clark et al., 

2006b; Goldwurm et al., 2007). The clinical and neurochemical phenotype of patients with 

LRRK2 mutations usually resembles sporadic PD, with neuronal degeneration accompanied 

by LB and good a response to levodopa. However, the disease pathologies can be quite 

variable, even within the same family (Tan and Skipper, 2007). These include motor neuron 

features, pure nigral degeneration without LB, neuronal loss with nuclear ubiquitin inclusions, 

neurofibrillary tangles, widespread LBs consistent with DLBD, and even progressive 

supranuclear palsy (PSP)-like tau pathology (Funayama et al., 2002; Zimprich et al., 2004; 

Gilks et al., 2005; Khan et al., 2005; Giasson et al., 2006; Giordana et al., 2007; Hasegawa et 

al., 2009; Hatano et al., 2009; Santpere and Ferrer, 2009).   
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 The LRRK2 gene encodes a large (2,527 amino acids) protein, also known as dardarin, 

which belongs to the ROCO protein family and contains multiple domains (Figure 4) 

consisting of an N-terminal leucine-rich repeat (LRR) region, a GTPase ROC/COR domain, 

a mitogen-activated protein kinase kinase kinase (MAPKKK) and C-terminal WD40 repeat 

domains (Taymans and Cookson, 2010; Mata et al., 2006a; Lesage and Brice, 2009). All the 

six known pathogenic mutations are located within the catalytic center of the protein, i.e., 

within the region consisting of GTPase ROC/COR and kinase domains. LRRK2 is 

abundantly expressed in most brain regions and other tissues (Paisan-Ruiz et al., 2004; 

Zimprich et al., 2004), implicating a broad range of cellular functions. The normal function 

of LRRK2 protein remains unknown, but it may play a role in intracellular signaling 

according to the presence of both GTPase and kinase domains (Taymans and Cookson, 2010; 

Gandhi et al., 2009). In addition, given the fact that best known LRRK2-interacting proteins 

Figure 4: LRRK2 domain architecture and genetic variation in the LRRK2 gene. ARM: Armadillo, ANK: 
Ankyrin repeat, LRR: leucine rich repeat, Roc: Ras of complex proteins: GTPase, COR: C-terminal of Roc, 

MAPKKK: mitogen activated kinase kinase kinase. Figure is adapted from (Lesage and Brice, 2009). 
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are involved in cytoskeleton and trafficking (Dachsel et al., 2007; Jaleel et al., 2007; Gandhi 

et al., 2008), it is reasonable to speculate that LRKK2 plays a role in membrane trafficking 

and axon guidance through the association with lipid rafts (Hatano et al., 2007).  

To date, the pathogenic role of LRRK2 is largely unknown, but several in vitro 

studies indicate that it may be associated with an increased kinase activity (Gloeckner et al., 

2006; Greggio et al., 2006), suggesting that kinase inhibition may be a promising therapy for 

PD. In addition, recent evidence on the basis of cell culture experiments suggest that the 

extrinsic apoptosis involving the Fas-associated protein with death domain 

(FADD)/caspase-8 signaling pathway may contribute to the toxic effect of LRRK2 mutations 

(Iaccarino et al., 2007; Ho et al., 2009), however, it remains to be seen if this is relevant in 

vivo.   

 

1.2.2.3 UCHL1 

 A heterozygous I93M mutation in the UCHL1 gene was identified in a small German 

family with autosomal dominant PD (Leroy et al., 1998b). Affected family members display 

clinical signs similar to those of sporadic PD (Leroy et al., 1998a). As yet no additional 

pathogenic mutations in UCHL1 have been reported. Thus, it remains contentious whether 

this gene is causative for inherited PD.  

 UCHL1 is a highly abundant and neuron-specific protein, constituting 1-2% of the 

soluble brain protein, and is also a component of LB in brains of sporadic PD (Wilkinson et 

al., 1989; Lowe et al., 1990). This protein belongs to the ubiquitin C-terminal hydrolase 

family of deubiquitinating enzyme that is responsible for hydrolysis of polyubiquitin chain to 

free monomeric ubiquitin (Larsen et al., 1996; Larsen et al., 1998). In addition to a 
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deubiquitinating function, UCHL1 might also function as a dimerization-dependent ubiquitin 

protein ligase (Liu et al., 2002). The mechanism by which the UCHL1 mutant causes PD 

remains unclear, but the I93M pathogenic mutation exhibits markedly reduced ubiquitin 

hydrolase activity in vitro (Leroy et al., 1998b; Liu et al., 2002), suggesting that the impaired 

polyubiquitin hydrolysis leading to a reduction in free ubiquitin monomers and accumulation 

of potentially deleterious proteins, might contribute to PD pathogenesis. 

 

1.2.2.4 Parkin 

 Mutations in the parkin gene were originally identified in Japanese families with 

autosomal recessive juvenile-onset parkinsonism (AR-JP) (Ishikawa and Tsuji, 1996; Kitada 

et al., 1998). Subsequent studies have identified a wide variety of parkin mutations in PD 

cases, including point mutations, exonic rearrangements, deletions and duplications (Lucking 

et al., 2001; Tan and Skipper, 2007). To date, more than 100 different parkin mutations have 

since been identified (Tan and Skipper, 2007). Parkin mutations are the most commonly 

known cause of autosomal recessive early-onset PD (Mizuno et al., 2008; Hatano et al., 

2009), accounting for about 50% of the familial and 20% of the sporadic early-onset PD 

cases (Lucking et al., 2000). In general, parkin-proven disease has typical signs of PD but 

with an earlier age of diseases onset (typically before 40 years), dystonia at onset, a slower 

diseases progression, and a dramatic response to levodpa manipulation (Lohmann et al., 

2003). However, several mutations in parkin may lead to a clinical presentation 

indistinguishable from typical late-onset idiopathic PD (Abbas et al., 1999; Klein et al., 2000; 

Foroud et al., 2003; Oliveira et al., 2003; Hatano et al., 2009). The pathological features of 

parkin-associated parkinsonism include typical loss of nigral neurons and moderate loss of 
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neurons in the locus coeruleus region (Mori et al., 1998). However, LB are usually absent 

(Mizuno et al., 2001b; Mizuno et al., 2001a; Mata et al., 2004). Nevertheless, for the sporadic 

forms of PD, parkin has been identified as a component of LB.  

 Parkin is a 465-amino acid protein and primarily expressed in the central nervous 

system, which has a modular structure (Figure 5) consisting of an ubiquitin-like (UBL) 

domain at the N terminus, a RING-box domain at the C terminus, and a central linker region 

(von Coelln et al., 

2004). The presence of 

UBL and RING-box 

domains implicates a 

role for parkin in the 

ubiquitin proteasome 

system (UPS). Indeed, 

parkin has been found to function as an E3 ubiquitin protein ligase (Shimura et al., 2000; 

Zhang et al., 2000b) that ubiquitinates unnecessary, damaged or misfolded proteins, and 

eventually triggers their degradation by the 26S proteasomes protein complexes (Glickman 

and Ciechanover, 2002). To date, a number of putative targets for parkin’s E3 ligase activity 

have been identified, including a rare O-glycosylated α-synuclein (Shimura et al., 2001), 

CDCrel-1 (Zhang et al., 2000b), CDCrel-2 (Choi et al., 2003), the parkin-associated 

endothelin like receptor (Pael-R) (Imai et al., 2001), synphilin-1 (Chung et al., 2001b), cyclin 

E (Staropoli et al., 2003), programmed cell death 2 (Fukae et al., 2009), the p38 subunit of 

the aminoacyl-tRNA synthetase complex (Corti et al., 2003), α/β tubulin (Ren et al., 2003), 

and synaptotagmin XI (Huynh et al., 2003), as well as parkin itself (Shimura et al., 2000; 

Figure 5: Functional domains of parkin protein and pathogenic mutations in the 
parkin gene. This figure is adapted from (Moore et al., 2005). 
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Zhang et al., 2000b). Interestingly, some of these substrates are synaptic proteins, suggesting 

a role of parkin in synaptic function (Fallon et al., 2002). Additionally, a role for parkin in 

maintaining mitochondrial function and preventing oxidative stress has been demonstrated in 

parkin-deficient mice and drosophila models (Greene et al., 2003; Palacino et al., 2004; 

Hatano et al., 2009). Consistent with this view, a neuroprotective function of parkin is well 

established on the basis of both in vivo and in vitro experiments (Moore et al., 2005; 

Casarejos et al., 2006; Vercammen et al., 2006; Schiesling et al., 2008). Although the precise 

mechanisms remain unclear, it appears that deleterious accumulation of toxic substrates as a 

consequence of parkin E3 ligase function loss, may at least partly explain the pathogenesis in 

parkin-associated parkinsonism (Moore et al., 2005). In support of this hypothesis, some 

parkin’s substrates have been shown to be neurotoxic when overexpressed (Imai et al., 2001; 

Corti et al., 2003; Dong et al., 2003; Yang et al., 2003). In addition, parkin dysfunction has 

also been implicated in the pathogenesis of sporadic PD based on the fact that functions of 

parkin can be altered by a wide array of oxidative stressors, including rotenone, MPP+, 

paraquat, nitric oxide and iron, as well as dopamine (Chung et al., 2004; Yao et al., 2004; 

Wang et al., 2005a).  

 

1.2.2.5 PINK1  

 PINK1 mutations were initially identified in a large Italian family with an autosomal 

recessive form of PD (Valente et al., 2001). Since then, more than 50 pathogenic PINK1 

mutations have been identified (Hatano et al., 2009). These mutations include point 

mutations, as well as insertions and deletions that result in frameshift and truncation of the 

protein (Atsumi et al., 2006; Exner et al., 2007). Mutations in PINK1 gene were estimated to 
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account for 1-8% of familial or early onset PD (Klein and Schlossmacher, 2007), and as such, 

PINK1 mutations are the second most commonly known cause of autosomal recessive PD, 

after parkin mutations (Hatano et al., 2004a; Valente et al., 2004b). The clinical phenotype of 

PINK1-associated PD resembles sporadic PD with rare atypical features such as dystonia at 

onset and dementia similar to those with parkin mutations (Hatano et al., 2004b; Valente et 

al., 2004b; Valente et al., 2004a; Steinlechner et al., 2007). It is not clear whether LB are 

present in this PINK1-linked disease, since no neuropathological examination of 

homozygous pathogenic mutation has been reported (Hardy et al., 2009). 

 PINK1 gene encodes a ubiquitously expressed 581-amino acid protein that contains 

an N-terminal mitochondrial targeting motif, a catalytic serine/threonine kinase domain and a 

C-terminal autoregulatory domain (Valente et al., 2004b; Silvestri et al., 2005). Numerous 

studies, both in vitro and in vivo, have demonstrated that PINK1 is a mitochondrial kinase, 

suggesting a role for it in mitochondrial dynamics (Silvestri et al., 2005; Gandhi et al., 2006; 

Haque et al., 2008). Indeed, PINK1 knockout models in drosophila exhibited mitochondrial 

abnormality and increased oxidative stress similar to those seen with parkin-deficient 

drosophila (Clark et al., 2006a). More interestingly, the mitochondrial dysfunction in 

PINK1-deficient drosophila can be rescued with parkin, indicating that PINK1 acts upstream 

of parkin in a common pathway that maintains the normal function of mitochondria (Clark et 

al., 2006a; Park et al., 2006; Poole et al., 2008). As for parkin, PINK1 also is reported to be 

neuroprotective, implicating its role in sporadic PD (Schiesling et al., 2008). As most 

pathogenic mutations are in the serine/threonine kinase domain, disruption of the PINK1 

kinase activity is believed to the most probable mechanism responsible for PINK1-associated 
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parkinsonism (Abou-Sleiman et al., 2006). Clearly, further analysis is required to elucidate 

the precise role of PINK1 in nigral neuronal loss in PINK1-linked PD.  

 

1.2.2.6 DJ-1  

 Mutations in DJ-1 were first identified in one Dutch family with autosomal recessive 

early-onset PD (van Duijn et al., 2001). Additional mutations including missense, exonic 

deletions, and splice site alterations were further identified (Bonifati et al., 2003; Bonifati et 

al., 2004; Hering et al., 2004). The DJ-1 mutations are extremely rare, accounting for less 

than 1% of early-onset PD cases (Clark et al., 2004; Lockhart et al., 2004). In general, 

patients with DJ-1 mutations exhibit a clinical presentation similar to that of parkin or PINK1 

mutations-associated parkinsonism (Hatano et al., 2009). Like PINK1 mutations, a 

neuropathological investigation has not yet been reported, and for this reason it is not clear 

whether the LB phenotype is present in this disorder (Hardy et al., 2009). Although DJ-1 is 

not an essential component of LBs, it appears to be consistently colocalized with neuronal 

tau-positive inclusions and glial cytoplasmic inclusions (Neumann et al., 2004), providing a 

link between DJ-1 and distinct neurodegenerative diseases.  

 The DJ-1 gene encodes a highly conserved 189-amino acid protein that can form a 

dimer and belongs to the DJ-1/ThiJ/Pfp1 superfamily. Expression of DJ-1 protein is 

ubiquitous in most mammalian tissues. In the human brain, it predominately localizes into 

astrocytes, with little localization in neurons (Bandopadhyay et al., 2004). In cells, it is 

mainly distributed in the cytoplasm, with smaller amounts associated with mitochondria 

(Zhang et al., 2005). The normal functions of DJ-1 remain elusive although many lines of 

evidence suggest that DJ-1 can serve as a redox-sensitive chaperone or an anti-oxidant that is 
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involved in mitochondria protection against oxidative stress (Hatano et al., 2009). 

Furthermore, DJ-1 can also function as a direct scavenger of ROS (Taira et al., 2004). 

Consistent with these findings, DJ-1 confers neuroprotection against a range of oxidative 

stress (Aleyasin et al., 2010; Moore et al., 2005). However, the precise mechanism 

underlying the neuroprotective action of DJ-1 awaits further clarification (Aleyasin et al., 

2010). In addition, several studies suggest that it may possess a chaperone-like activity and 

proteolytic activity (Lee et al., 2003; Olzmann et al., 2004). Importantly, DJ-1 may play an 

important role in the sporadic forms of PD, since analysis of the sporadic PD brain revealed 

oxidative damage to DJ-1, as well as a dramatic increase in the DJ-1 protein levels (Choi et 

al., 2006a; Waragai et al., 2006). The mechanism of DJ-1 function loss in DJ-1-associated 

parkinsonism is not clear. So far, the L166P mutant is the best studied DJ-1 mutation, which 

destabilizes the DJ-1 proteins through the impairment in their ability to self-interact, and 

eventually enhances their proteasome-dependent degradation (Macedo et al., 2003; Miller et 

al., 2003; Moore et al., 2003). 

 

1.2.2.7 ATP13A2  

 ATP13A2 mutations were first identified in a Jordanian family with autosomal 

recessive early onset parkinsonism known as Kufor Rakeb disease (Ramirez et al., 2006). As 

yet no pathological examinations have been reported. This gene encodes a lysosomal type 5 

P-type ATPase and is presumed to be located in the lysosome (Lesage and Brice, 2009). How 

the loss-of-function mutations to ATP13A2 cause PD pathogenesis remains elusive, but the 

interference with localization of this protein into lysosome leading to lysosomal dysfunction 

appears to be involved (Hatano et al., 2009).  
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Figure 6: Potential mechanisms involved in the development of PD. Adapted from Brown et al. (2006). 

 

1.3 Disease pathogenesis  

 In spite of decades of intense research, the precise pathogenesis of PD remains 

unknown. However, several pathogenic mechanisms underlying development of the disease, 

including oxidative and nitrosative stress, mitochondrial dysfunction, impairment of 

ubiquitin-proteasome system, apoptosis, inflammation and excitotoxicity, have been 

proposed (Mattson, 2000; Chung et al., 2001a; Vila and Przedborski, 2003; Abou-Sleiman et 

al., 2006; Olanow, 2007; Tansey et al., 2007; Burke, 2008). Currently, the culprit of 

dopamine neuron loss in PD is likely to be a combination of multiple interlinking pathways 

(Figure 6), called the “multiple hit hypothesis,” rather than a unifying mechanism (Obeso et 

al., 2010; Sulzer, 2007).  
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1.3.1 Oxidative stress and mitochondrial dysfunction 

 Oxidative stress has long been implicated in the process of neurodegeneration in PD 

pathogenesis. Oxidative stress, arising from excessive production of ROS and/or defective 

ROS removal, can potentially damage cellular lipids, proteins, and DNA. Postmortem studies 

have consistently observed high levels of oxidation of lipids, proteins, and nucleic acids in 

the SNc of sporadic PD brains (Dexter et al., 1989b; Yoritaka et al., 1996; Alam et al., 1997; 

Floor and Wetzel, 1998; Jenner, 2003; Tsang and Chung, 2009). Also, significant alterations 

of the antioxidant defense system, in particular reduced glutathione, are found in the SNc of 

PD patients (Sian et al., 1994). Mitochondrial respiratory chain is the major source of ROS, 

in particular the hydrogen peroxide and superoxide anions (Migliore and Coppede, 2009). In 

the presence of ferrous iron, these ROS can be converted to even more potent ROS, such as 

the hydroxyl radical and hydroxyl anion (Chinta and Andersen, 2008; Winterbourn, 2008). 

Not surprisingly, the level of iron is significantly increased in the SNc of PD brains (Sofic et 

al., 1988; Dexter et al., 1989a; Riederer et al., 1989; Jenner and Olanow, 1996). Apart from 

being the main source of increased oxidative stress in PD brains, mitochondrial function 

itself also can be affected by oxidative stress (Cardoso et al., 1999; Cadenas and Davies, 

2000; Cecarini et al., 2007), which further takes part in the accumulation of ROS and 

mitochondrial damage in a vicious cycle. In this context, the feedforward mechanism appears 

to be a common mechanism underlying neuronal cell death in neurodegenerative diseases. In 

addition to mitochondria, auto-oxidation of dopamine, a reaction known to generate 

superoxide and hydrogen peroxide, as well as reactive dopamine quinones, specifically 

contributes to the cellular ROS in dopaminergic neurons (LaVoie and Hastings, 1999; 

Hastings, 2009). This dopamine-dependent oxidative stress is suggested to partially explain 
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the selective vulnerability of dopaminergic neurons in PD. Another important contributor of 

oxidative stress is nitric oxide (NO), which is generated by nitric oxide synthase (NOS) 

(Jenner, 2003). Reaction of ROS with NO produces highly toxic reactive nitrogen species 

(RNS), such as the peroxynitrite and nitro-tyrosyl radicals (Zhang et al., 2000a). Besides 

damaging cellular proteins, lipids, and DNA, oxidative stress also can activate a variety of 

effector pathways including ERK, JNK, PI3K/Akt, NF-κB, p53, PKC, caspases and Bcl-2 

family members, as well as inflammation, contributing to the downstream processes that lead 

ultimately to cell survival or cell death (Finkel and Holbrook, 2000; Hartmann et al., 2000; 

Hartmann et al., 2001a; Hartmann et al., 2001b; Beal, 2003; Kanthasamy et al., 2003a; Perier 

et al., 2005; Loh et al., 2006; Mattson, 2006; Perier et al., 2007). 

 Over the last several decades, mitochondrial dysfunction is a widely accepted 

pathogenic pathway contributing to PD pathogenesis. There is considerable evidence for 

mitochondrial dysfunction in the brains of PD patients. Impairment of complex I activity of 

the mitochondrial electron transport chain has been detected in the SNc, skeletal muscle, 

lymphocytes, and platelets of patients with PD (Mizuno et al., 1989; Parker et al., 1989; 

Schapira et al., 1989; Yoshino et al., 1992; Barroso et al., 1993; Mann et al., 1994; Haas et al., 

1995; Penn et al., 1995; Blandini et al., 1998). Increased oxidation of complex I subunits and 

reduced rates of electron transfer through complex I, as well as misassembly of complex I, 

were also demonstrated in PD brains (Keeney et al., 2006). It is noteworthy that a significant 

reduction in complex I activity was recently reported in purified mitochondria isolated from 

PD frontal cortex (Keeney et al., 2006; Parker et al., 2008; Navarro and Boveris, 2009), 

which may contribute to impaired cognition in PD. Moreover, increased mtDNA deletions 

were detected in nigral neurons in PD brains (Bender et al., 2006). Although no pathogenic 
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mutations in mtDNA have as yet been reported, a specific polymorphism in the gene 

encoding NADH dehydrogenase 3 (ND3) of complex I was shown to lead to a significant 

decrease in the risk of PD (van der Walt et al., 2003).  

 Further evidence for involvement of mitochondrial dysfunction and oxidative stress in 

PD comes from epidemicological studies using the environmental toxin MPTP that results in 

an acute and irreversible parkinsonism in human and non-human primates (Langston et al., 

1983). MPTP (Figure 7) is a lipophilic molecule that can easily cross the blood-brain barrier 

and be metabolized to 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP) in a reaction 

catalyzed by the monoamine oxidase B (MAOB) in glial cells.  This unstable metabolite is 

further metabolized to the 

pyridinium ion (MPP+, 

1-methyl-4-phenylpyridiniu

m iron), the active toxic 

compound (Langston et al., 

1984; Markey et al., 1984). 

MPP+ then is selectively 

taken up by the dopamine 

neurons via the dopamine 

transporter (DAT), where it 

is concentrated in 

mitochondaria, causes the 

complex I defect and in turn produces ROS, activating microglia and leading ultimately to 

cell death (Javitch et al., 1985; Nicklas et al., 1985; Ramsay et al., 1986; Przedborski et al., 

Figure 7: The MPTP metabolism. Adapted from Vila and 
Przedborski (2003). 
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2001; Kotake and Ohta, 2003; Schober, 2004; McGeer and McGeer, 2008). MPP+ can also 

be taken up by the dopaminergic synaptic vesicles via vesicular monoamine transporter 2 

(VMAT2) (Del Zompo et al., 1991, 1992; Peter et al., 1994). This uptake may cause the 

cytoplasmic distribution of dopamine, leading to increased dopamine-dependent oxidative 

stress (Lotharius and Brundin, 2002). A number of downstream apoptotic events that are 

responsible for MPTP-mediated degeneration of SNc neurons have been revealed. These 

include NFκB-dependent transactivation of iNOS (Carbone et al., 2009), up-regulation of 

JNK (Saporito et al., 1999) and Bax (Vila et al., 2001), release of cytochrome c and 

activation of caspase-3 and caspase-9 (Viswanath et al., 2001). In addition to MPTP, a 

variety of pesticides with related properties, such as rotenone, paraquat, dieldrin, and maneb, 

also have been extensively investigated. It appears that all of these toxins exhibit a common 

feature, i.e., inhibition of mitochondrial respiratory chain and production of oxidative stress 

(Brown et al., 2006; Migliore and Coppede, 2009). Consistent with this view, antioxidants 

can be used to ameliorate their toxicity (Suntres, 2002; Uversky, 2004). It is noteworthy that, 

unlike MPTP and paraquat, rotenone is uniformly distributed throughout the brain, but it still 

results in selective loss of SNc neurons (Bove et al., 2005; Miller et al., 2009).  

 The identification of PD-linked genes in the last decade has further supported the 

relevance of mitochondrial oxidative stress and dysfunction in PD pathogenesis. Indeed, 

these genes, including α-synuclein, parkin, DJ-1, PINK1, LRRK2, and HrtA2, either directly 

or indirectly link their pathogenic roles with mitochondrial dysfunction and subsequent 

oxidative stress. Post-translational modifications of α-synuclein, such as nitration and 

oxidation, increase α-synuclein propensity to aggregate (Giasson et al., 2000; Yamin et al., 

2003; Hodara et al., 2004; Glaser et al., 2005; Uversky et al., 2005; Lee and Trojanowski, 
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2006). Moreover, nitrated and oxidized forms of α-synuclein have been found commonly in 

Lewy bodies (Giasson et al., 2000; Ischiropoulos and Beckman, 2003; Navarro and Boveris, 

2009), implicating that oxidative stress may play a role in the formation of LB inclusions. 

Recently, the nitrated form of α-synuclein has been shown to be more toxic to dopaminergic 

neurons in vitro and in vivo, suggesting that oxidation/nitration of α-synuclein might be 

relevant to PD pathogenesis (Yu et al., 2010). In addition, several in vitro studies have shown 

that auto-oxidation of dopamine can modulate the aggregation of α-synuclein possibly 

through the formation of the α-synuclein-dopamine quinone adducts that retain an unfolded 

conformation and thus inhibit fibril formation (Conway et al., 2001; Li et al., 2005; Norris et 

al., 2005; Leong et al., 2009). There is also evidence to suggest that α-synuclein has a 

neuroprotective function protecting neurons against oxidative stress through distinct 

pathways (Hashimoto et al., 2002; Quilty et al., 2006). Accumulating evidence also suggests 

a close connection between α-synuclein and mitochondria. In neurotoxin-treated cellular and 

animal models, complex I defects consistently causes selective dopaminergic degeneration 

with associated α-synuclein-positive inclusions (Forno et al., 1988; Betarbet et al., 2000; 

Manning-Bog et al., 2002). In addition, in vitro and in vivo overexpression of wildtype or 

mutant α-synuclein can lead to a variety of mitochondrial alterations, such as decreased 

mitochondrial membrane potential, oxidation of mitochondrial proteins, exacerbation of 

effects of mitochondrial toxins, and ultrastructural abnormalities, suggesting that α-synuclein 

might play a role in mitochondrial function (Hsu et al., 2000; Tabrizi et al., 2000; Song et al., 

2004; Poon et al., 2005; Stichel et al., 2007; Parihar et al., 2009). Interestingly, although 

debated, it has been proposed that α-synuclein can be localized into mitochondria (Li et al., 

2007; Nakamura et al., 2008; Shavali et al., 2008; Zhang et al., 2008). Recently, Devi and 
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colleagues located a cryptic mitochondrial targeting signal to the N-terminal 32-amino acid 

region of α-synuclein, and they also reported that mitochondrial accumulation of α-synuclein 

resulted in mitochondrial dysfunction and increased ROS generation (Devi et al., 2008). 

They concluded that the accumulation of α-synuclein in mitochondria might be relevant to 

PD pathogenesis since an enhanced level of α-synuclein was found in SNc and striatum of 

PD brains compared to healthy control brains. The mitochondrial localization of α-synuclein 

might be dependent on intracellular pH, and under some pathological conditions, such as pH 

changes during oxidative stress, mitochondrial accumulation of α-synuclein might be 

significantly enhanced (Cole et al., 2008). Further studies are needed to elucidate the precise 

functions of α-synuclein in the regulation of mitochondria functions.  

 Additionally, other genes linked to familial PD have been implicated in the 

mitochondrial function and stress response. S-nitrosylated form of parkin is detected in LBs 

of PD brains (Chung et al., 2004), further implying a role of oxidative/nitrative stress in LB 

formation. The S-nitrosylation of parkin can negatively regulate its E3 ligase activity, which 

may contribute to the accumulation of misfolded proteins (Chung et al., 2004; Yao et al., 

2004). Parkin could also be covalently modified by dopamine, resulting in the loss of its 

activity (LaVoie et al., 2005). Although largely present in the cytosol, parkin can be found 

within mitochondria or associated with the outer mitochondrial membrane under certain 

conditions (Shimura et al., 1999; Darios et al., 2003; Kuroda et al., 2006). Multiple lines of 

studies have suggested that parkin plays a key role in maintaining mitochondrial integrity and 

function. Mitochondrial abnormalities have been noted in both parkin-knockout and 

parkin-mutant transgenic mice and files, as well as in leukocytes from PD patients with 

parkin pathogenic mutations (Greene et al., 2003; Muftuoglu et al., 2004; Palacino et al., 
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2004; Stichel et al., 2007; Wang et al., 2007; Mortiboys et al., 2008). Furthermore, Riparbelli 

et al. reported that in files functional parkin is required for proper mitochondrial organization 

and morphology throughout spermatid development (Riparbelli and Callaini, 2007). 

Deficiency in PINK1, a mitochondrial kinase, also leads to mitochondrial abnormalities in 

files (Clark et al., 2006a). Interestingly, PINK1 and parkin appear to act in a common 

pathway in PD pathogenesis because overexpression of parkin can rescue PINK1-null linked 

damage (Clark et al., 2006a; Park et al., 2006). Moreover, the mitochondrial abnormalities 

due to the loss function of parkin or PINK1 can be rescued by knockdown of mitofusin, optic 

atrophy 1, or overexpression of dynamin-related protein 1 (Deng et al., 2008). These proteins 

are associated with mitochondrial fusion and fission, thus lending more support to the 

hypothesis that parkin and PINK1 are important for mitochondrial function. Finally, DJ-1 can 

function as an anti-oxidant, and interestingly, oxidative stress due to complex I inhibition can 

enhance the mitochondrial localization of DJ-1 (Canet-Aviles et al., 2004), which indicates 

that DJ-1 may also play a role in mitochondrial function. However, it appears that DJ-1 does 

not function within the PINK1/parkin pathway, since overexpression of DJ-1 could not 

rescue the mitochondrial abnormalities in parkin- or PINK1-deficient flies (Yang et al., 2006; 

Exner et al., 2007). It is noteworthy that parkin, PINK1, and DJ-1 all seems to play an 

important role in cell protection against a wide spectrum of stressors, including 

mitochondrial dysfunction and proteasome inhibition, etc. (Canet-Aviles et al., 2004; Taira et 

al., 2004; Valente et al., 2004b; Kim et al., 2005; Menzies et al., 2005; Petit et al., 2005; 

Moore, 2006; Paterna et al., 2007; Winklhofer, 2007; Haque et al., 2008; Wood-Kaczmar et 

al., 2008).  
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1.3.2 Impairment of the ubiquitin-proteasome system 

 Emerging evidence suggests a key role for the ubiquitin-proteasome system (UPS) in 

the molecular pathogenesis of PD. In fact, the presence of insoluble ubiquitin-positive 

proteinaceous aggregates or inclusion bodies is a common pathological feature in human 

neurodegenerative disorders (Kopito, 2000; Goldberg, 2003; Ross and Poirier, 2004). The 

UPS plays a pivotal role in degrading mutant, damaged, or misfolded intracellular proteins 

that could otherwise form potentially deleterious aggregates (Goldberg, 2003; Cook and 

Petrucelli, 2009). Ubiquitination is accomplished by posttranslational covalent conjugation of 

ubiquitin polypeptide to a lysine residue in specific target proteins through an 

ATP-dependent enzymatic pathway (Hershko and Ciechanover, 1998). Protein ubiquitination 

is catalyzed by a series of enzymatic steps involving an E1 activating enzyme, an E2 

conjugating enzyme, and an E3 ligase that typically confers specificity to the ubiquitin 

machinery (Lydeard and Harper, 2010). The polyubiquitinated proteins are then targeted to 

the 26S proteasome for degradation. The 26S proteasome consists of a 20S catalytic core 

particle and a 19S regulatory particle (Hershko and Ciechanover, 1998; Pickart and Cohen, 

2004; Mukhopadhyay and Riezman, 2007). Polyubiquitin chains released from target 

proteins are subsequently disassembled into monomeric ubiquitin through a reaction 

catalyzed by deubiquitinating enzymes (Wilkinson, 1997). Therefore, defects in either 

ubiquitination or the 26S proteasome may lead to the accumulation and aggregation of toxic 

proteins eventually resulting in neurodegeneration as seen in PD. 

The first indication of protein misfolding in the pathogenesis of PD is the presence of 

intracytoplasmic proteinaceous inclusions together with the accumulation of oxidatively 

damaged, denatured, mutated, or misfolded proteins known as LB in the SNc of most PD 
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brains, although the relevance of LB formation to nigral neuronal death is still uncertain 

(Pollanen et al., 1993; Forno, 1996). LB are composed of a variety of free and ubiquitinated 

proteins, including ubiquitin, α-synuclein, parkin, proteasome subunits, UCHL1, torsin-A, 

synphilin-1, chaperons and neurofilaments (Lowe et al., 1990; Forno, 1996; Ii et al., 1997; 

Spillantini et al., 1998; Shimura et al., 1999; Shashidharan et al., 2000; Wakabayashi et al., 

2000; Shimura et al., 2001; Auluck et al., 2002). In particular, the accumulation of 

ubiquitinated proteins in LB indicates an overwhelming of the UPS or loss of function in 

proteasomal protein degradation in the PD pathogenesis. Consistently with this hypothesis, 

postmortem studies have detected both structural and functional impairments of the UPS in 

the SNc of PD brains (McNaught and Jenner, 2001; McNaught et al., 2002; McNaught et al., 

2003). Moreover, systemic administration of proteasome inhibitors into rats can lead to the 

selective loss of SNc dopamine neurons, as well as the formation of LB-like inclusions and 

recapitulate many key features of sporadic PD (McNaught et al., 2004; Miwa et al., 2005; 

McNaught and Olanow, 2006). However, whether UPS dysfunction in PD is a primary cause 

or a secondary effect remains a matter of debate. As the ubiquitin/proteasome pathway is 

ATP-dependent, impairment of UPS might be a consequence of the inhibition of complex I 

activity and/or oxidative damage. In addition, the role of proteasome inhibition in the PD 

pathogenesis is still controversial. Several in vivo studies using proteasome inhibitors failed 

to show loss of nigral neurons (Bove et al., 2006; Kordower et al., 2006), and strikingly, 

there is also data demonstrating that proteasome inhibition can provide a neuroprotective 

effect against a variety of insults both in vivo and in vitro (Phillips et al., 2000; van Leyen et 

al., 2005; Yamamoto et al., 2007; Maher, 2008; Oshikawa et al., 2009).  
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 The most compelling evidence linking UPS with the degeneration of nigrostriatal 

dopamine neurons in PD is the identification that mutations in parkin gene represent one of 

the most commonly known genetic causes of early-onset PD (Kitada et al., 1998). Parkin is 

a member of the E3 ubiquitin ligase family, and several substrates of parkin have been 

identified (Poole et al., 2008). It is currently thought that pathogenic parkin gene mutations 

cause loss of ubiquitination activity, leading to the abnormal accumulation of toxic proteins 

and neurodegeneration (Lesage and Brice, 2009). In addition, a missense mutation (I93M) in 

the UCHL1 gene has been identified in a few rare familial PD cases (Leroy et al., 1998b), 

although the relevance of the I93M mutation in PD is still contentious. UCHL1 belongs to a 

family of deubiquitinating enzymes and the I93M mutant displays reduced ubiquitin 

hydrolase activity, suggesting that a defect in polyubiquitin hydrolysis might also lead to 

impaired clearance of abnormal proteins and consequent neurodegeneration (Leroy et al., 

1998b; Liu et al., 2002).  

 

1.3.3 Apoptosis 

 Apoptosis has been widely implicated in dopaminergic neuron death of PD although 

there is still debate on it (Mattson, 2000; Vila and Przedborski, 2003). Initially, efforts 

focused on apoptotic cells in postmortem brains of PD patients in an attempt to identify 

morphological and biochemical markers of apoptosis (Mochizuki et al., 1996). TdT-mediated 

dUTP digoxigenin nick end labeling (TUNEL), which is considered to be the most sensitive 

method for detect fragmentated DNA in situ, was the main approach used for these studies, 

and it was demonstrated that increased numbers of TUNEL-positive dopaminergic neurons 

exist in the postmortem brains of PD patients. Further studies also showed the activation of 
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different initiator and effector caspases, including caspase-8, -9 and -3 in the brains of PD 

patients (Hartmann et al., 2000; Hartmann et al., 2001b; Viswanath et al., 2001), although 

other studies failed to find such activation (Banati et al., 1998; Jellinger, 2000). The 

controversy of these results makes the involvement of apoptosis in PD still debatable. It has 

to be considered that postmortem brain samples of PD patient are usually at the last stage of 

disease, when most dopaminergic neurons are already lost and apoptotic changes may not be 

detected at all (Vila and Przedborski, 2003). To bypass this problem, many in vitro cell and 

in vivo animal models of PD have been developed. Among these models, the MPTP mouse 

model has been extensively used in all aspects of studies of PD (Przedborski and Vila, 2003). 

In this mouse model, damage of complex I of mitochondria respiratory chain in substantial 

nigral dopaminergic neurons was observed, which also existed in the postmortem brain 

samples of PD patients (Gluck et al., 1994). Together with elevated ROS generation and 

perturbation of calcium homeostasis after MPTP administration (Jackson-Lewis et al., 1995), 

mitochonadial respiratory chain damage was thought to be the early events triggering the 

intrinsic apoptotic pathway in dopaminergic neuron death. Substantial evidence also has 

demonstrated all major events of an apoptotic intrinsic pathway, including cytochrome C 

release, caspase-3 activation and further cell death after MPTP administration. In addition to 

the clear evidence of a role for apoptosis in neurotoxin models, and somewhat controversial 

evidence from human postmortem studies, there is abundant evidence that some of the 

genetic causes of PD, including α-synuclein (Manning-Bog et al., 2003; Sidhu et al., 2004; 

Chandra et al., 2005; Machida et al., 2005; Leng and Chuang, 2006), parkin (Darios et al., 

2003; Jiang et al., 2004; Machida et al., 2005), PINK1 (Petit et al., 2005; Plun-Favreau et al., 

2007), and DJ-1 (Canet-Aviles et al., 2004; Junn et al., 2005; Xu et al., 2005), are directly 
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and primarily involved in the regulation of apoptotic pathways. Taken together, apoptotic 

death was strongly implicated in dopaminergic neuron and then the pathogenesis of PD. 

However, the selective death of nigral dopaminergic neurons in PD suggests that specific 

factors in signal pathways or regulatory mechanisms of apoptotic death, other than general 

intrinsic apoptotic pathways, may exist and contribute to the selective apoptotic death of 

dopaminergic neuron.  

 

1.4 Protein Kinase C delta  

1.4.1 Protein Kinase C delta activation and its role in PD  

 The protein kinase C (PKC) family is one of the major serine/threonine protein kinase 

families fulfilling the protein phosphorylation, and thus mediating different cellular processes, 

including proliferation, differentiation, survival and apoptosis (Gschwendt, 1999). PKC was 

first identified in 1977 by Nishizuka and co-workers as a nucleotide-independent and 

calcium-dependent serine kinase (Inoue et al., 1977). This family is composed of at least 11 

isoforms that are further divided into three groups based on their structure and mode of 

stimulation. The conventional PKCs (α, βI, βII, γ) are activated by the binding of 

diacylglyerol (DAG) in a calcium-dependent manner, whereas the novel PKCs (δ, ε, η, θ) 

require DAG, but not calcium, for their activity. The atypical PKCs (ζ, ι, λ) do not respond to 

either DAG or calcium for activation (Churchill et al., 2008). All PKC isoforms are 

composed of an N-terminal regulatory domain and a C-terminal catalytic domain that are 

separated by a flexible-hinge V3 region (Newton, 1995a). The regulatory domain contains 

two conserved regions, C1 and C2, as well as a pseudo-substrate region that mimics a 

substrate and interacts with the substrate-binding cavity in the catalytic domain, keeping the 
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protein inactive within the cytosol (Soderling, 1990; Liu and Heckman, 1998). For the 

conventional PKCs, binding of calcium and DAG to the C2 domain and the zinc finger-rich 

region of the C1 domain, respectively, leads to the release of the autoinhibition and 

subsequent activation of the enzyme (Newton and Johnson, 1998; Newton, 2003). The lack 

of the amino acids essential for a functional calcium-binding site in C2 domain confers 

calcium independence to novel PKCs. The catalytic domain is composed of the conserved C3 

and C4 regions, which function as the catalytic ATP binding site and kinase catalytic site, 

respectively (Newton, 1995b). The flexible-hinge V3 region has been identified as a target 

for caspase-dependent cleavage (Steinberg, 2008). PKCδ (see Figure 8 for its domain 

structure), a member of the novel PKC subfamily, was first discovered by Gschwendt et al. 

(Gschwendt et al., 1986). Consistent with other PKC isoforms, PKCδ consists of a regulatory 

domain (N-terminus) and a 

catalytic domain (C-terminus). 

The PKCδ regulatory domain, 

lacking an authentic C2 region, 

only has a C2-like region, thus 

explaining its inability to be activated by calcium. Also, a pseudo-substrate sequence is 

located between the C2-like and C1 region, which is proposed to keep the enzyme in an 

inactive conformation.  

 Like other conventional and novel PKC isoforms, PKCδ is primarily activated by a 

lipid-mediated mechanism involving its translocation from cytosol to membrane. In addition, 

two other pathways of PKCδ activation have been elucidated: phosphorylation and 

proteolytic activation (Kikkawa et al., 2002a; Brodie and Blumberg, 2003). It has been 

Figure 8: Domain structure of PKCδ. 
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reported that phosphorylation of Thr-505, Ser-643, and Ser-662 in activation loop can 

increase PKCδ kinase activity (Toker, 1998). In contrast to the phosphorylation of Thr/Ser 

sites, tyrosine phosphorylation at tyrosine residues Tyr-52, Tyr-155, Tyr-187, Tyr-311, 

Tyr-332, and Tyr-565 has also been implicated to modulating PKCδ activity (Gschwendt, 

1999). A range of stimulus has been reported to induce the tyrosine phosphorylation of PKCδ 

(Kikkawa et al., 2002a). For example, treatment with the known oxidative stress-inducing 

agent hydrogen peroxide (H2O2) was reported to cause Tyr-311 and Tyr-332 phosphorylation 

of PKCδ (Konishi et al., 2001). We have found that under certain stimuli (H2O2), the 

phosphorylation of Tyr-311on PKCδ is particularly important for the proteolytic activation of 

PKCδ in dopaminergic neurons (Kaul et al., 2005b). Because multiple tyrosine residues on 

PKCδ can be phosphoylated by upstream kinase, the effect of tyrosine phosphorylation may 

vary depending on both the position of phosphoylated-tyrosine and the specific cellular 

context. Another activation mechanism of PKCδ, proteolytic activation, was discovered 

recently. This caspase-3-mediated cleavage of PKCδ yields 41-kDa catalytically active and 

38-kDa regulatory fragments. The proteolytic activation of PKCδ has been implicated in 

apoptosis in many cell types (D'Costa and Denning, 2005; Ryer et al., 2005; Choi et al., 

2006b). Our recent studies have characterized a critical role for the caspase-3-dependent 

proteolytic activation of PKCδ in oxidative stress-induced dopaminergic cell death in cell 

culture models of PD. In rat mesencephalic dopaminergic neuronal N27 cell models, 

exposure to dopaminergic neurotoxins, such as inorganic manganese (Latchoumycandane et 

al., 2005), an organic manganese containing the gasoline additive, MMT (Anantharam et al., 

2002), the agriculture chemical dieldrin (Kitazawa et al., 2003), MPP+ (Kaul et al., 2003; 

Yang et al., 2004), the proteasome inhibitor MG-132 (Sun et al., 2008), or the oxidative 
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stress-inducing agent H2O2 (Kaul et al., 2005b), induced a dose-dependent and 

time-dependent increase in the proteolytic activation of PKCδ. Furthermore, using 

pharmacological inhibitors (PKCδ-specific inhibitor rottlerin, and caspase-3 inhibitors 

z-DEVD-fmk, or z-DIPD-fmk) and genetic tools (PKCδ siRNA or PKCδ cleavage-resistant 

mutant), we have demonstrated that the caspase-3-dependent proteolytic activation of PKCδ 

plays an important role in neurotoxin-induced apoptotic death (Yang et al., 2004; 

Kanthasamy et al., 2006; Sun et al., 2008). We also found that the active PKCδ form is not 

translocated to the cell membrane, suggesting that the lipid-mediated activation mechanism is 

not involved in this process (Kaul et al., 2003; Yang et al., 2004). Native or cleaved PKCδ 

was also shown to move to the mitochondria or nucleus in apoptotic cells (Reyland et al., 

1999; Brodie and Blumberg, 2003), where it may phosphotylate its substrate or interact with 

other proteins. In the nucleus, it was reported that PKCδ can induce phosphorylation of lamin 

B (Cross et al., 2000). Several other proteins have also been identified to interact with PKCδ, 

including DNA-dependent protein kinase (DNA-PK), (Bharti et al., 1998), and p73 (Ren et 

al., 2002), etc. Additionally, a positive feedback amplification loop between PKCδ and 

caspases-3 has been discovered by our laboratory (Kaul et al., 2003). We found that the 

proteolytic activation of PKCδ regulates upstream caspase-3 activity, thus suggesting that 

PKCδ may function as both the mediator and signal amplifier within the neurotoxin-induced 

apoptotic pathway.   

 

1.4.2 Genomic organization of PKCδδδδ genes  

 The genomic structure of PKCδ related genes was shown for human PRKCD 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&dopt=full_report&list_ui
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ds=5580), mouse Prkcd 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&dopt=full_report&list_ui

ds=18753), and rat Pkcd 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&dopt=full_report&list_ui

ds=170538). The genomic location of PKCδ gene is on chromosomes 3, 14, and 19 of 

human, mouse and rat, respectively (Kikkawa et al., 2002b). The PKCδ of rat, mouse, and 

human markedly resembled each other in genomic organization (Suh et al., 2003). The rat 

PKCδ gene comprises 19 exons and 18 introns, and spans approximately 29 kb (Figure 9), 

whereas the murine and human PKCδ genes are both composed of 18 exons and 17 introns 

that span approximately 23 kb and 32 kb, respectively (Figure 10) (Kurkinen et al., 2000; 

Suh et al., 2003). The translation start codon of the murine and human PKCδ is located at the 

second exon, whereas rat PKCδ contains an extra exon in the 5’UTR and places the 

translation start codon at the third exon. Among these three mammalian PKCδ genes, the 

ORF size of the corresponding exons are highly conserved while the size of introns are 

Figure 9: Genomic structure of rat PKCδ (adapted from Kurkinen et al. 2000). 
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Figure 10: Genomic structure of murine PKCδ (adapted from Suh et al. 2003). 

significantly conserved, indicating that they are evolutionarily conserved (Suh et al., 2003). 

The considerably long 5’ untranslated region (UTR), as long as 675 bp in rat, is rarely found 

among the PKC family. Moreover, a huge gap, nearly 17 kb in human and 12 kb in rat and 

mouse, is found between the transcription start and translation start sites, suggesting a 

complexity may be involved in gene splicing. In contrast, there is great difference in genomic 

structure between nematodes and the three mammalian species. The exon/intron junctions 

mainly follow the GT/AG-rule among these four species.  

 

1.4.3 PKCδδδδ expression and gene regulation 

 PKCδ is expressed in most tissues, including brain, spleen, ovary, lung and uterus, as 

well as many cell types (Leibersperger et al., 1991). In rodent, northern blot shows that 

PKCδ has a high expression in the brain, spleen, epidermis, uterus, placenta and kidney (Ono 

et al., 1988). In the CNS, a survey of expression of PKC isoforms in the brain by 

immunostaining of different isoforms of PKC reveals that PKCδ was highly expressed in the 

thalamus and septal nuclei, hippocampal CA1 pyramidal cell layer (Naik et al., 2000); In 
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parallel, another study of expression of PKC isoforms in the brain by both immunostaining 

and in situ hybridization reveals that PKCδ expresses highly in some purkinje neurons in the 

cerebellum (Barmack et al., 2000). Both studies also indicate that PKCδ mainly localizes in 

the cytosol of cell body (Barmack et al., 2000; Naik et al., 2000). Recently, we reported that 

PKCδ is highly expressed in mouse nigral tissues and co-localizes with the tyrosine 

hydroxylase (TH) by double immunostaining method (Zhang et al., 2007c).   

 It has been reported that PKCδ expression could be regulated in a number of cell 

models through either a gnomic or non-genomic mechanism by diverse extracellular stimuli, 

including insulin, etoposide, estrogens, vitamin D3, mechanical forces, or bryostatin 1 (Berry 

et al., 1996; Shanmugam et al., 1999; Peters et al., 2000; Geng et al., 2001; Shin et al., 2004; 

Choi et al., 2006b; Horovitz-Fried et al., 2006). Despite extensive investigations on the 

molecular mechanisms of activation of PKCδ, little information is available on the 

mechanisms that control PKCδ expression at the transcriptional level. It has been reported 

that NFκB played an important role in the UV-induced and TNF-α-mediated mouse PKCδ 

expression in mouse keratinocytes, and mouse fibroblasts, respectively (Suh et al., 2003; Liu 

et al., 2006a). In human prostate cancer cells, androgen receptor can bind to a functional 

androgen-responsive element in response to androgen stimulation in the human PKCδ 

expression (Gavrielides et al., 2006). In human Saos-2 cells, p53 family proteins (p63, and 

p73) can recognize three-p53 binding sites in human PKCδ promoter to induce PKCδ 

expression (Ponassi et al., 2006; Horovitz-Fried et al., 2007). Furthermore, Sp-1 

transcriptional factor is involved in the insulin-induced increase in PKCδ expression via an 

upstream Sp site in the PKCδ promoter (~1500 bp upstream of transcription start site) in 
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mouse L6 cells (Horovitz-Fried et al., 2007). However, the regulatory mechanisms in 

neuronal cells are largely unknown so far.  
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CHAPER II: TRANSCRIPTIONAL REGULATION OF PROTEIN KINASE C δ, A 

PRO-APOPTOTIC KINASE: IMPLICATIONS FOR OXIDATIVE DAMAGE  IN 

DOPAMINERGIC NEURODEGENERATION 
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Abstract 

 

 We previously demonstrated that protein kinase Cδ (PKCδ) is an oxidative stress 

sensitive kinase that plays a causal role in apoptotic cell death in neuronal cells. While PKCδ 

activation has been extensively studied, relatively little is known about the molecular 

mechanisms controlling PKCδ expression. To characterize the regulation of PKCδ 

expression, we cloned a ~2k-bp 5’-promoter segment of the mouse PKCδ gene. Deletion 

analysis indicated that the non-coding exon 1 region contained multiple Sp sites, including 

four GC boxes and one CACCC box, which directed the highest levels of transcription in 

neuronal cells. In addition, an upstream regulatory region containing adjacent repressive and 

anti-repressive elements with opposing regulatory activities was identified within the region 

-712 to -560. Detailed mutagenesis revealed that each Sp site made a positive contribution to 

PKCδ promoter expression. Overexpression of Sp family proteins markedly stimulated PKCδ 

promoter activity without any synergistic transactivating effect. Furthermore, experiments in 
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Sp-deficient SL2 cells indicated long-isoform Sp3 as the essential activator of PKCδ 

transcription. Importantly, both PKCδ promoter activity and endogenous PKCδ expression in 

NIE115 cells and primary striatal cultures were inhibited by mithramycin A. The results from 

chromatin immunoprecipitation and gel shift assays further confirmed the functional binding 

of Sp proteins to PKCδ promoter. Additionally, we demonstrated that overexpression of p300 

or CBP increases the PKCδ promoter activity. This stimulatory effect requires intact Sp 

binding sites and is independent of p300 HAT activity. These findings may have implications 

for development of new therapeutic strategies against oxidative damage.   

 

Introduction 

  

 PKC represents a large family of at least 12 serine/threonine kinases that particpate in 

a wide variety of cellular events, including proliferation, cell cycle progression, 

differentiation, and apoptosis (Dempsey et al., 2000). Based on their structure and substrate 

requirements, PKC isoforms are divided into three groups: conventional PKCs (α, βI, βII, 

and γ), novel PKCs (δ, ε, η, and θ), and atypical PKCs (ζ and ι/λ). As a novel PKC, PKCδ 

has been recognized as a key pro-apoptotic effector in various cell types (Brodie and 

Blumberg, 2003). The role of PKCδ in nervous system function is beginning to emerge, and 

recent studies show that PKCδ plays a role in regulation of receptor and channel activity, 

differentiation, migration, and apoptosis (Saito, 1995). In addition to lipid-mediated 

activation and phosphorylation activation, a new pathway of PKCδ activation, proteolytic 

cleavage, was discovered recently. Previously, we showed that PKCδ is an oxidative 

stress-sensitive kinase, and that persistent activation of PKCδ by caspase-3-mediated 
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proteolytic cleavage is a key mediator in oxidative stress-induced dopaminergic 

neurodegeneration (Anantharam et al., 2002; Kaul et al., 2003; Kitazawa et al., 2003; Kaul et 

al., 2005; Latchoumycandane et al., 2005). Alternatively, pharmacological inhibiton of PKCδ 

and depletion of PKCδ by siRNA are each sufficient to prevent dopaminergic 

neurodegeneration in cell culture and animal models of Parkinson’s disease (Yang et al., 

2004; Kanthasamy et al., 2006; Zhang et al., 2007a). We also showed that PKCδ negatively 

regulates tyrosine hydroxylase (TH) activity and dopamine synthesis by enhancing protein 

phosphatase 2A activity in dopaminergic neurons (Zhang et al., 2007b). An elevated striatal 

dopamine level was observed in PKCδ knockout mice as compared to wild type mice, further 

demonstrating a key role of the kinase in the nigrostriatal dopaminergic function (Zhang et al., 

2007b). In addition, increased PKCδ activity, caused by aberrant expression of PKCδ, has 

been implicated in disease conditions, such as ischemia/hypoxia (Hlavackova et al., 2010; Li et 

al., 2010; Miettinen et al., 1996) and cancer (Reno et al., 2008). Therefore, an understanding of 

the molecular mechanisms that control the amount and activity of PKCδ is of physiological 

and pathophysiological interest.   

 PKCδ is ubiquitously expressed although the expression pattern is varied and complex 

(Ono et al., 1988; Leibersperger et al., 1991; Barmack et al., 2000; Naik et al., 2000). Evidence 

suggests that diverse stimuli can induce PKCδ expression (Berry et al., 1996; Shanmugam et 

al., 1999; Peters et al., 2000b, a; Shin et al., 2004; Choi et al., 2006; Horovitz-Fried et al., 

2006), but the detailed mechanisms responsible for transcriptional regulation of PKCδ, 

especially in neuronal cells, have never been explored. The PKCδ promoter is surprisingly 

complex and does not contain a TATA box. The considerably long 5’ untranslated region, as 
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long as 675 bp in rat, is rarely found among the PKC family (Kurkinen et al., 2000; Suh et 

al., 2003). Moreover, a huge distance, nearly 17 kb in human and 12 kb in rat and mouse, is 

revealed between the transcription start and translation start sites (Kurkinen et al., 2000; Suh 

et al., 2003). To our knowledge, only a few studies have documented the functional elements 

in the PKCδ promoter, or the characteristics of the factors involved in the control of PKCδ 

transcription (Gavrielides et al., 2006; Liu et al., 2006; Ponassi et al., 2006; Horovitz-Fried et 

al., 2007). In this study we analyzed the mouse PKCδ promoter to identify the transcriptional 

mechanisms underlying neuronal PKCδ expression. By combining cell biological, molecular 

and biochemical approaches, we cloned ~2 kb of mouse PKCδ promoter, characterized 

multiple DNA regulatory elements that positively or negatively regulate PKCδ gene 

expression, and identified members of the Sp protein family of transcription factors as 

fundamentally critical determinants of basal PKCδ gene transactivation.  

 

Experimental Procedures 

 

Reagents  

Mithramycin A (MA) and hydrogen peroxide (H2O2) were purchased from 

Sigma-Aldrich (St. Louis, MO). Antibodies against PKCδ, Sp1, Sp3, and Sp4 were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Lipofectamine 2000 reagent 

and all cell culture reagents were obtained from Invitrogen (Carlsbad, CA). 
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Cloning of the 5’-flanking region of PKCδδδδ gene and Plasmids construction  

 The 2.0-kb (-1694/+289) mouse PKCδ promoter sequence was amplified by fusion 

PCR from mouse genomic DNA prepared from the MN9D cells. Briefly, the -1694/-1193 

and -1217/+289 fragments of the mouse PKCδ promoter first were amplified using mouse 

genomic DNA as a template and the primer sets P-1694F/P-1193R1 and P-1217F/P+289R 

(for all primers see Table S1), respectively. The two gel-purified PCR products then were 

mixed and used as a template to amplify the -1694/+289 fragment with the primer set 

P-1694F/P+289R. The conditions used in this second PCR were 95°C for 2 min; 25 cycles of 

95°C for 45 sec, 57.5°C for 30 sec, and 68°C for 2 min; and 68°C for 5 min. The resultant 

2.0-kb PKCδ promoter fragment was inserted into XhoI/HindIII sites of pGL3-Basic 

luciferase vector (Promega, Madison, WI) and designated as pGL3-1694/+289. Using 

pGL3-1694/+289 as a template, a series of truncated PKCδ promoter reporter constructs 

were constructed by PCR with appropriate primers and cloned into pGL3-Basic vectors, 

similar to the preparation of pGL3-1694/+289. To generate the reporter plasmid 

pGL3-Promoter-660/-561, fragment -660/-561 was PCR-amplified and inserted into the 

upstream of the SV40 promoter in pGL3-Promoter vector (Promega). For construction of 

pGL3-660/-561 plus +2/+289, primer pairs P-660F/P-561+2R and P-561+2F/P+289R were 

used for application of fragments -660/-561 and +2/+289, respectively. The fusion fragment 

-660/-561 plus +2/+289 was then amplified by the fusion PCR technique as described above 

using the primers P-660F/P+289R, followed by cloning into pGL3-Basic vector. To generate 

plasmids pGL3-147/+2 plus +2/+289 or pGL3-147/+2 plus +289/+2, fragment +2/+289 was 

PCR-amplified using a primer pair P+2F/P+289R that included a flanking XhoI site at both 

ends, digested with XhoI, and cloned in either orientation into the pGL3-147/+2 reporter 
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construct at the distant SalI site downstream of the luciferase gene. All reporter constructs 

were verified by DNA sequencing.  

 The expression plasmid bearing the cDNA of GFP-PKCδ was a kind gift from Dr. 

Mary Reyland at the University of Colorado Health Sciences Center (Denver, CO), and the 

pEGFP-C1 control vector was purchased from Clontech Laboratories (Mountain View, CA). 

The constructs for mammalian expression of pN3-Sp1, pN3-Sp4, and pN3-Sp3 FL encoding 

both long and short isoforms of Sp3 (Sapetschnig et al., 2004), and the Drosophila actin 

promoter-driven expression vectors for Sp1 (pPac-Sp1), the short isoforms of Sp3 

(pPac-Sp3), the long isoforms of Sp3 (pPac-USp3), the full length of Sp3 (pPac-Sp3 FL, 

which is equivalent to the mammalian vector pN3-Sp3FL), Sp4 (pPac-Sp4), and 

β-galactosidase (p97b) (Lopez-Soto et al., 2006), as well as the “empty” control vectors pN3 

and pPac0, were generously provided by Dr. G. Suske (Philipps-Universität Marburg,  

Germany). The plasmid pPac-Sp2 (Saur et al., 2002) was a kind gift from Dr. Dieter Saur 

(Technische Universität München, Germany). The p300 wild-type expression plasmid 

pCI-p300 and its histone acetyltransferase (HAT) deletion mutant, pCI-p300∆HAT, were 

kindly provided by Dr. Joan Boyes (Institute of Cancer Research, United Kingdom) and 

generated as described previously (Boyes et al., 1998). The empty vector pCIneo was a gift 

from Dr. Christian Seiser (University of Vienna, Austria). The expression plasmid 

pcDNA-CBP (Yang et al., 1996) was a gift from Dr. Xiang-Jiao Yang (McGill University, 

Canada). To generate the luciferase-reporter plasmids, Sp1-Luc and mSp1-Luc (Sowa et al., 

1999), which contains three consensus Sp1 binding sites underlined from SV40 promoter and 

three mutant Sp1 binding sites, respectively, the oligonucleotides with the sequences 

(Sp1-Luc:5’-ATATATCTCGAGCGCGTGGGCGGAACTGGGCGGAGTTAGGGGCGGG 
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AAAGCTTATATAT-3’; mSp1-Luc:5’-ATATATCTCGAGCGCGTGTTTTGAACTGTTTT 

GAGTTAGGTTTTGGAAAGCTTATATAT-3’) were synthesized, annealed, and subcloned 

into the pGL3-Basic luciferase vector. To build the eukaryotic expression plasmid 

pcDNA-Sp2, Sp2 cDNA was cut out with XhoI from the pPac-Sp2 construct and inserted 

into the XhoI site of the pcDNA3.1 vector (Invitrogen).  

 

Site-directed mutagenesis 

 Point mutations of potential transcription elements (GC and CACCC motifs) were 

introduced into the proximal PKCδ promoter reporter plasmid pGL3-147/+289, 

pGL3-147/+209, or pGL3+165/+289 by using the GeneTailor Site-Directed Mutagenesis 

System (Invitrogen) with overlapping PCR primers indicated in Table S1, according to the 

manufacturer’s instructions. To generate double mutants, plasmids carrying a single mutation 

were used as a template to further introduce the second mutation. For triple mutants, 

plasmids carrying double mutations were utilized. The mutated sequences of all mutants 

were confirmed by DNA sequencing.  

 

Primary mouse striatal neuronal culture and treatment 

 Plates (6-well) were coated overnight with 0.1 mg/ml poly-D-lysine. Striatal tissue 

was dissected from gestational 16- to 18-day-old murine embryos and kept in ice-cold 

Ca2+-free Hanks’s balanced salt solution. Cells then were dissociated in Hank’s balanced salt 

solution containing trypsin-0.25% EDTA for 30 min at 37 °C. After enzyme inhibition with 

10% heat-inactivated fetal bovine serum (FBS) in Dulbecco’s Modified Eagle’s Medium, the 

cells were suspended in Neurobasal medium supplemented with 2% Neurobasal supplement 
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(B27), 500 µM L-glutamine, 100 units penicillin, and 100 units streptomycin, plated at 2 × 

106 cells in 2 ml/well and incubated in a humidified CO2 incubator (5% CO2 and 37 °C). Half 

of the culture medium was replaced every 2 days, and experiments were conducted using 

cultures between 6 and 7 days old. After exposure to doses of mithramycin A ranging from 

0.5 to 5 µM for 24 h, the primary striatal cultures were subjected to quantitative real-time 

RT-PCR or immunocytochemical analysis. 

 

Cell lines, Transient transfections, and Reporter gene assays 

 The mouse dopaminergic MN9D cell line was a generous gift from Dr. Syed Ali 

(National Center for Toxicological Research/FDA, Jefferson, AR). The mouse 

neuroblastoma NIE115 cell line was a kind gift from Dr. Debomoy Lahiri (Indiana 

University School of Medicine, Indianapolis, IN). The Drosophila SL2 cell line was 

purchased from ATCC (Manassas, VA). NIE115 and MN9D cells were cultured in 

Dulbecco’s Modified Eagle’s Medium supplemented with 10% FBS, 2 mM L-glutamine, 50 

units penicillin, and 50 units streptomycin (37 °C/5% CO2). For H2O2 treatment studies, 

before addition of H2O2 (final concentration 0.5-2.0 mM), MN9D cells were switched to 

serum-free Dulbecco’s Modified Eagle’s Medium. Drosophila SL2 cells were maintained at 

23°C without CO2 in Schneider's Drosophila medium containing 10% FBS.  

 Transient transfections of NIE115 and MN9D cells were performed using 

Lipofectamine 2000 reagent according to the manufacturers’ instructions. Cells were plated 

at 0.3 × 106 cells/well in six-well plates 1 day before transfection. Each transfection was 

performed with 4 µg of reporter constructs along with 0.5 µg of pcDNA3.1-βgal (Invitrogen) 

used to monitor transfection efficiencies. Cells were harvested at 24 h post-transfection, lysed 
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in 200 µl of Reporter Lysis Buffer (Promega), and assayed for luciferase activity. For 

cotransfection assays, various amounts of expression plasmids as indicated in figures were 

added to the reporter plasmids. The total amount of DNA was adjusted by adding an empty 

vector. In some experiments, mithramycin A (0-5 µM) was added 4 h after DNA transfection, 

and luciferase activity was measured 24 h later. For transfection of SL2 cells, one day before 

transfection, cells were plated onto six-well plates at a density of 2.1 × 106 cells/well. Cells 

were transfected using the Calcium Phosphate Transfection kit (Invitrogen), as described 

previously (Suske, 2000). Each well received 4 µg of reporter construct, 4 µg of 

β-galactosidase expression plasmid p97b for normalization of transfection efficiencies, and 

varying amounts (0-4 µg) of the fly Sp expression plasmids. DNA amounts of expression 

plasmids were compensated with the empty plasmid pPac0. After 24 h of transfection, the 

medium was changed, and 24 h later the cells were harvested, lysed by freeze-thawing in 200 

µl of 0.25 M Tris-HCl (pH 7.8), and assayed for luciferase activity.  

 Luciferase activity was measured on a Synergy 2 Multi-Mode Microplate Reader 

(BioTek, Winooski, VT) using the Luciferase Assay system (Promega), and β-galactosidase 

activity was detected using the β-Galactosidase Enzyme Assay system (Promega). The ratio 

of luciferase activity to β-galactosidase activity was used as a measure of normalized 

luciferase activity. 

 

Quantitative real-time RT-PCR 

 Total RNA was isolated from fresh cell pellets using the Absolutely RNA Miniprep 

kit (Stratagene, La Jolla, CA). First strand cDNA was synthesized using an AffinityScript 

QPCR cDNA Synthesis kit (Stratagene). Real-time PCR was performed in an Mx3000P 
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QPCR system (Stratagene) using the Brilliant SYBR Green QPCR Master Mix kit 

(Stratagene), with cDNAs corresponding to 150 ng of total RNA, 12.5 µl of 2 × master mix, 

0.375 µl of reference dye, and 0.2 µM of each primer in a 25-µl final reaction volume. All 

reactions were performed in triplicate. Sequences for PKCδ primers are shown in Table S1. 

β-actin was used as internal standard with the primer set purchased from Qiagen (QuantiTect 

Primers, catalog number QT01136772). The PCR cycling conditions contained an initial 

denaturation at 95 °C for 10 min, followed by 40 cycles of denaturation at 95 °C for 30 sec, 

annealing at 60 °C for 30 sec, and extension at 72°C for 30 sec. Fluorescence was detected 

during the annealing step of each cycle. Dissociation curves were run to verify the singularity 

of the PCR product. The data were analyzed using the comparative threshold cycle (Ct) 

method (Livak and Schmittgen, 2001). 

 

Methylation specific PCR (MSP)  

 For MSP experiments, genomic DNA was isolated using the DNeasy blood & tissue 

kit as mentioned earlier. Bisulfite modification was subsequently carried out on 500 ng of 

genomic DNA by the MethylDetector bisulfite modification kit (Active Motif, Carlsbad, CA) 

according to the manufacturer’s instructions. Two pairs of primers were designed to amplify 

specifically methylated or unmethylated PKCδ sequence using MethPrimer software (Li and 

Dahiya, 2002). The cycling condition was: 94 °C for 3 min, after which 35 cycles of 94 °C 

for 30 sec, 54 °C for 30 sec, 68 °C for 30 sec, and finally 72 °C for 5 min. PCR products 

were loaded onto 2% agarose gels for analysis. 
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Immunoblotting  

 Cell lysates were prepared as previously described (Zhang et al., 2007c). 

Immunoblotting was performed as previously described (Kanthasamy et al., 2006). Briefly, 

the samples containing equal amounts of protein were fractionated through a 7.5% 

SDS-PAGE and transferred onto a nitrocellulose membrane (Bio-Rad Laboratories, 

Hercules, CA). Membranes were blotted with the appropriate primary antibody and 

developed with either IRDye 800 anti-rabbit or Alexa Fluor 680 anti-mouse secondary 

antibodies. The immunoblot imaging was performed with an Odyssey Infrared Imaging 

system (Li-cor, Lincoln, NE). 

 

Immunostaining and microscopy  

 Immunostaining of PKCδ was performed in primary striatal neurons. Cells grown on 

coverslips pre-coated with poly-D-lysine were washed with PBS and fixed in 4% 

paraformaldehyde for 30 min. After washing, the cells were permeabilized with 0.2% Triton 

X-100 in PBS, washed with PBS, and blocked with blocking agent (5% bovine serum 

albumin, 5% goat serum in PBS). Cells then were incubated with the antibody against PKCδ 

(1:1000, Santa Cruz) overnight. Fluorescently conjugated secondary antibody (Alexa 

568-conjugated anti-rabbit antibody red, 1:1500) was used to visualize the protein. Nuclei 

were counterstained with Hoechst 33342 for 3 min at a final concentration of 10µg/ml. 

Finally, images were viewed using an oil-immersion 60 × Plan Apo lens with a 1.45 

numerical aperture on a Nikon inverted fluorescence microscope (model TE2000, Nikon, 

Tokyo, Japan). Images were captured with a SPOT color digital camera (Diagnostic 

Instruments, Sterling Heights, MI) and processed using Metamorph 5.07 image analysis 
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software (Molecular Devices). For quantitative analysis of immunofluorescence, we 

measured average pixel intensities from the region of interest (ROI) using the Metamorph 

5.07 image analysis software. 

 

Nuclear extracts preparation and EMSA 

 NIE115 nuclear extract was prepared as previously described (Tavares et al., 1999). 

For EMSAs, the IRyeTM 700-labeled complementary single-stranded oligonucleotides 

corresponding to sequences +205 to +236 of the mouse PKCδ promoter were synthesized 

(Li-cor), annealed and used as labeled probe. The unlabeled competitor oligos were obtained 

from Integrated DNA Technologies, Inc (Coralville, IA). The sequences of oligos used for 

EMSAs are illustrated in Table S2. In each reaction, 50 fmol labeled probes and 10 µg 

nuclear or cytoplasmic extracts were added. The resulting DNA-protein complexs were 

resolved on a 7% nondenaturing polyacrylamide gel and analyzed on the Odyssey imaging 

system (Li-cor). In competition experiments, before the addition of the labeled probe, nuclear 

extracts were pre-incubated for 30 min at room temperature with a 100-fold molar excess of 

unlabeled competitor oligos.  

 

Chromatin immunoprecipitation (ChIP)  

 ChIP assays were conducted with chromatin isolated from NIE115 cells using the 

ChIP-IT Express Enzymatic kit from Active Motif according to the manufacturer’s 

instructions with slight modifications. Briefly, after cross-linking, the nuclei were prepared 

and applied to enzymatic digestion to generate chromatin fragments between 200 to 1500 bp. 

The sheared chromatin was collected by centrifuge, and a 10-µl aliquot was removed to serve 
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as a positive input sample. Aliquots of 70-µl sheared chromatin were immunoprecipitated 

with 3 µg indicated antibody and protein-G magnetic beads. Equal aliquots of each chromatin 

sample were saved for no-antibody controls. The immunoprecipitated DNA was analyzed by 

PCR using PKCδ-specific primer set P+2F/P+289R indicated in Table S1 to amplify a region 

(+2 to +289) within PKCδ promoter. Conditions of linear amplification were determined 

empirically for these primers. PCR conditions are as follows: 94°C 3 min; 94°C 30 sec, 59°C 

30 sec, and 68°C 30 sec for 35 cycles. PCR products were resolved by electrophoresis in a 

1.2% agarose gel and visualized after ethidium bromide staining. 

 

DNA fragmentation assays 

 DNA fragmentation assay was performed using a Cell Death Detection ELSA plus kit 

as previously described (Anantharam et al., 2002). Briefly, after treatment with various doses 

of H2O2 for 20 h, cells were collected and lysed in 450 µl of lysis buffer supplied with the kit 

for 30 min at room temperature, and spun down at 2300 × g for 10 min to collect the 

supernatant. The supernatant then was used to measure DNA fragmentation as per the 

manufacturer’s protocol. Measurements were made at 405 and 490 nm using a SpectraMax 

190 spectrophotometer (Molecular Devices). 

  

Bioinformatics  

 The search for phylogenetic sequence conservation among rat, human, and murine 

PKCδ promoter was conducted with the program DiAlign TF (Morgenstern et al., 1996) 

(Genomatix Software). This program identifies common transcription factor binding-site 

(TFBS) matches located in aligned regions though a combination of alignment of input 
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sequences using the program DiAlign with recognition of potential TFBS by MatInspector 

software (Cartharius et al., 2005) (Genomatix Software).  

 

Statistical analysis 

 Unless otherwise stated, all data were determined from three independent 

experiments, each done in triplicate, and expressed as average values ± SEM. All statistical 

analyses were performed using the GraphPad Prism 4.0 software (GraphPad Software, San 

Diego, CA). One-way analysis of variance (ANOVA test) followed by the Tukey multiple 

comparison test were used for statistical comparisons, and differences were considered 

significant if P-values less than 0.05 were obtained.  

 

Results 

 

Identification of DNA elements involved in transcriptional regulation of mouse PKCδδδδ 

gene 

 The mouse PKCδ gene, located on mouse chromosome 14, comprises 18 exons that 

span ~20 kb (Fig. 1A). The PKCδ promoter lacks a TATA box and contains GC-rich 

sequences in the proximal promoter region. Further, examination of the PKCδ promoter did 

not reveal the classic initiator element (Inr) or the downstream promoter element (DPE), 

which are located at various distances downstream of the transcription start site (TSS) and 

are utilized by most TATA-less promoters to initiate transcription, suggesting that there 

might be other promoter motifs involved in the regulation of PKCδ gene transcription. To 
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facilitate analysis of the regulation of the PKCδ promoter, an approximately 2k-bp fragment 

containing the putative PKCδ promoter (1694 bp), as well as partial sequences of the first, 

non-coding exon (289 bp), was amplified by the fusion PCR technique from MN9D cells. 

This sequence has been deposited in the GenBank data bank under accession number 

GU182370. The resulting -1694/+289 region of the PKCδ promoter was placed upstream of 

the pGL3-Basic vector, designated as pGL3-1694/+289, and it was transiently transfected 

into NIE115 and MN9D cells along with the pcDNA3.1-βgal plasmid to monitor transfection 

efficiency. Luciferase activity of this construct increased nearly 30-fold as compared with the 

pGL3-Basic control, suggesting that this 2-kb sequence possesses functional promoter 

activity in both cells (Fig. 1B-C). To further delineate the location of functional elements that 

govern the PKCδ promoter activity, we introduced a series of truncated promoter fragments 

in the pGL3-1694/+289 construct by PCR and cloned into the pGL3-Basic vector. Both 

NIE115 and MN9D cells displayed similar profiles of reporter activity upon transfection with 

these reporter constructs. Two constructs pGL3-147/+289 and pGL3+2/+289, which contain 

sequences with high GC content in the proximal first exon, each exhibited a maximal 

luciferase activity that averaged ~260% of the activity of the pGL3-1694/+289 construct in 

both cells. Furthermore, lack of the sequence from +2 to +289 led to near background 

reporter activity in six truncated promoter constructs (pGL3-1694/-148, pGL3-1694/-659, 

pGL3-1694/-1193, pGL3-1192/-659, pGL3-1192/-148, and pGL3-660/-148). Thus, these 

data suggest the particular importance of the GC-rich sequences in the region between +2 to 

+289 for sustaining PKCδ gene transcription in neuronal cells. It should be noted that a 

vector, pGL3-147/+2, containing the -147/+2 fragment in which the basal promoter region 

was placed to drive luciferase expression, demonstrated modest transcriptional activity 
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(average activity in both cells, ~45% of that produced by the construct pGL3-1694/+289). 

Addition of the 5’ fragment of -660 to -147 into the pGL3-147/+289 construct result in a 

complete loss of activity in construct pGL3-660/+289, indicating the presence of a strong 

repressive element that negatively regulates transcription activity within the -660 to -147 

region. Further addition of the 5’ sequence from -1192 to -660 into the pGL3-660/+289 

construct partially blocked this repressive effect, indicating that the region (between -1192 

and -660) contained either an enhancer element or an anti-repressor element that overcame 

the repression. Construct pGL3-1192/-660, however, displayed no luciferase activity in either 

cell line, thus, within this region (-1192 to -660 bp) an anti-repressive element existed, but 

not an enhancer element. The region between -1694 to -1193 may contain a weak inhibitory 

cis-element, as deletion of this ~500 bp from the construct pGL3-1694/+289 resulted in a 

slight increase in the promoter activity. Taken together, these results demonstrate that the 

PKCδ promoter contains multiple positive and negative regulatory elements in NIE115 and 

MN9D cells. The GC-rich region located between bp +2 and +289 contains a sequence of 

nucleotides necessary for transcription of the mouse PKCδ gene, and the sequence between 

-660 to -147 and -1192 to -660 contains a strong negative regulatory element (NREI) and an 

anti-repressive element with opposing activities controlling PKCδ gene expression. The 

region of -1694 to -1193 also contains a weak negative regulatory element (NREII).  

 Next, the identified negative regulatory element and anti-repressive element within 

the region between -1192 and -148 were investigated in more detail. First, to define the 

borders of these regulatory elements more precisely, series of detailed 5’ deletions were 

constructed in this region and tested for their relative transcriptional activity utilizing the 

-147/+289 fragment as the baseline. As shown in Fig. 2A-B, in either MN9D or NIE115 



www.manaraa.com

66 

cells, the anti-inhibitory effect of the anti-repressive element was retained, even after deletion 

of the sequence between nucleotides -1192 and -712. However, the anti-inhibitory effect was 

completely abolished when the sequence between -712 to -660 was deleted, suggesting that 

the anti-repressive element resides between the nucleotides -712 and -660. Further deletion 

of the region between -660 and -560 restored almost full promoter activity; however, all six 

of the 5’-deltion constructs from -560 to -197 exhibited comparable transcriptional activities 

to that of the -147/+289 fragment. This suggests that the NREI is limited to the region 

between -660 and -560.      

 Two functional types of NRE have been defined: promoter-specific NRE and the 

so-called silencer elements that are able to repress promoter activity in an orientation- and 

position-independent fashion, as well as in the context of both native and heterologous 

promoter (Brand et al., 1985). To further characterize the functional properties of the NREI 

in the PKCδ promoter, a chimeric fragment corresponding to the transcriptionally inhibited 

sequence from -660 to -561 was subcloned immediately 5’ of the PKCδ proximal promoter 

construct pGL3-147/+289 to obtain pGL3-660/-561 plus -147/+289. As shown in Fig. 2C, 

the repressive activity of this region was significantly attenuated, and indeed, the luciferase 

activity in MN9D cells was actually increased, suggesting that the inhibitory activity of this 

repressive element is dependent upon its physical location in the PKCδ promoter. 

Furthermore, when the same fragment was placed 5’ upstream of the heterologous SV40 

early promoter (pGL3-Promoter-660/-561, Fig. 2D), no repressive activity was observed in 

either NIE115 or MN9D cells. Taken together, these data demonstrate that the NREI in the 

PKCδ promoter is functioning mechanistically as a promoter-specific repressive element, but 

not as a classic transcriptional silencer element. 
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Five Sp sites act as crucial cis-elements regulating the PKCδδδδ promoter 

 We further concentrated our studies on the sequences with high GC content between 

+2 and +289 since experiments described earlier suggested the critical role of this proximal 

288 bp region in the regulation of mouse PKCδ transcription. A comparison of this region 

with the corresponding regions of the rat and human PKCδ genes using a DiAlign TF 

program (Cartharius et al., 2005) revealed that this region is conserved between all three 

species; the identities are 89%, 60%, and 61% between rat and mouse, human and mouse, 

and human and rat, respectively (Fig. 3A). Further, the regions of all species are GC-rich and 

contain >66% GC content. Subsequent analysis with the program MatInspector (Cartharius et 

al., 2005) revealed the presence of a number of potentially important transcription 

factor-binding sites that are phylogenetically conserved among all species (identities are 

more than 95%), including four consecutive GC boxes (consensus GGGGCGGGG) 

designated GC(1) to GC(4) within ~250 bp downstream of the TSS. In addition, a CACCC 

box (also called GT box) that matches consensus CCACCCC was found at position +35 bp 

downstream of the TSS (Fig. 3A). GC boxes, GT/CACCC box and related GC-rich motifs, 

which are frequently designated Sp sites, often act as the binding sites for Sp transcription 

factors to regulate the basal and induced transcription of the core promoter as well as operate 

as essential enhancer sequences (Suske, 1999; Black et al., 2001). The functional importance 

of different Sp binding sites for transactivation of the PKCδ promoter was investigated by 

site-directed mutagenesis of these binding sites within the context of the PKCδ reporter 

construct pGL3-147/+289. Transient transfections of NIE115 and MN9D cells were carried 

out with these mutant constructs and promoter activity was determined and expressed relative 
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to that of the wild-type construct. As shown in Fig. 3B-C, the mutation of the CACCC box at 

+35 slightly diminished promoter activity in NIE115 (~15%) and MN9D (~10%) cell lines as 

compared with the wild-type construct. Alteration of the most distal GC(4) site at +256 

displayed ~12% and 30% reduction in promoter activity over the wild-type construct in 

NIE115 and MN9D cells, respectively, whereas the inhibition observed with the GC(3) 

mutant, located just upstream of GC(4), was more pronounced, (reduced by ~30% and 40% 

in NIE115 and MN9D cells, respectively). In contrast, mutation of either the proximal GC(2) 

box or GC(1) box caused major decrements in reporter activity (~50% and 55% elimination 

in NIE115 and MN9D cells, respectively), suggesting that GC(2) and GC(1) represent more 

important motifs in activating the PKCδ promoter in comparison to the GC(3), GC(4), and 

CACCC sites. To investigate the regulatory interplay of different Sp sites, we performed 

simultaneous mutations of different Sp sites, and more reductions in promoter activity were 

seen with this strategy, thus suggesting that a functional synergism between these Sp sites is 

critical for the PKCδ promoter activity. For example, double mutations ablating the CACCC 

box with the GC(3) box, or GC(2) box, or GC(1) box resulted in a reduction of promoter 

activity by ~60% in both cell lines.  However, double mutations of GC(3) and GC(2) boxes, 

or GC(3) and GC(1) boxes, reduced the activity of the PKCδ promoter in NIE115 and MN9D 

cells by ~73% and 80%, respectively. A further reduction in promoter activity by ~95% 

occurred when both the GC(2) box and GC(1) box were mutated. Finally, triple mutations of 

CACCC, GC(2), and GC(1) sites, or triple mutations of GC(3), GC(2), and GC(1) sites 

entirely abolished the PKCδ promoter activity. Taken together, these functional data suggest 

that GC(1) and GC(2) sites, and less significantly, GC(3), GC(4), and CACCC sites, are 

critical cis-elements for constitutive expression of PKCδ in neuronal cells.  In addition, 
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these Sp sites can cooperate in an additive manner to regulate the PKCδ promoter 

transactivation. 

 Given the great enhancing effect of the crucial GC-rich motif from +2 to +289 bp on 

the transcriptional activity of the PKCδ basal promoter region -147 to +2 (Fig. 1), we next 

investigated whether this GC-rich domain is sufficient to function as an enhancer element in 

NIE115 cells. To address this, the sequences around the region between +2 and +289 were 

subcloned in either orientation into the pGL3-147/+2 reporter construct, at the distant SalI 

site downstream of the luciferase stop codon (pGL3-147/+2 plus +2/+289 or pGL3-147/+2 

plus +289/+2, Fig. 3D). Then the relative transcriptional strength of these constructs was 

measured in NIE115 cells. The results showed that, somewhat surprisingly, the GC-rich 

motif in either orientation and at some distance completely lost the ability to enhance 

transcription compared with the vector pGL3-147/+289 (Fig. 3D). These data demonstrate 

that the GC-rich fragment is distance- and orientation-dependent, and thus cannot operate as 

a classic enhancer element for PKCδ transcription in NIE115 cells. 

 

PKCδδδδ promoter expression is stimulated by Sp1, Sp2, Sp3 and Sp4 in NIE115 cells and 

MN9D cells  

 The Sp family members including Sp1, Sp2, Sp3 and Sp4 are the major transcription 

factors that bind to the GC box, GT/CACCC box, and other closely related GC-rich motifs. 

Sp1, Sp2, and Sp3 are ubiquitously expressed in mammalian cells, whereas Sp4 expression is 

restricted to brain tissue (Suske, 1999). All of them share the same target sequences with 

similar binding affinities. To assess the functional significance of those Sp family proteins 

for the activity of mouse PKCδ promoter, various amounts (from 4-8 µg) of expression 
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vectors for Sp1 (pN3-Sp1), Sp2 (pcDNA-Sp2), the full length of Sp3 (pN3-Sp3 FL encoding 

both long and short isoforms of Sp3), Sp4 (pN3-Sp4) and empty vectors (pN3 or pcDNA3.1) 

were individually cotransfected along with the PKCδ promoter construct pGL3-147/+289 

into NIE115 and MN9D cells. Normalized luciferase activities were expressed as fold 

induction over cotransfections with empty vectors. As shown in Fig. 4A, all four Sp proteins 

exhibited a dose-dependent activation of PKCδ luciferase activity in NIE115 cells, with Sp3 

being the most potent transactivator (1.4- to 2.3-fold, 1.2- to 1.6-fold, 1.4- to 3.1-fold, and 

1.4- to 2.4-fold stimulation for Sp1, Sp2, Sp3 and Sp4, respectively). These results suggest 

that all Sp transcription factors can potently transactivate the PKCδ promoter in NIE115 

cells. Likewise, overexpression of Sp3 in MN9D cells transactivated the PKCδ promoter in a 

dose-dependent manner from 1.5- to 2.5-fold. However, Sp1, Sp2 and Sp4 activated the 

PKCδ promoter much less efficiently than Sp3 in MN9D cells (maximal inductions of only 

1.2-, 1.8-, and 1.2-fold with 8 µg of Sp1, Sp2 or Sp3 expression vector, respectively), 

suggesting that Sp3 is a strong activator of mouse PKCδ transcription in MN9D cells, 

whereas Sp1, Sp2 and Sp4 are weak. Overexpression of Sp1, Sp3, and Sp4 in transfected 

NIE115 (Fig. 4B, left panel) and MN9D (Fig. 4B, right panel) was verified by Western blot 

analysis. Note that Sp3 and Sp4 are endogenously expressed at appreciable levels in either 

cell line, but unexpectedly, the expression of endogenous Sp1 was not detected in both cells, 

which is discordant with the fact that Sp1 is a ubiquitous transcription factor. 

 Members of the Sp family share a high affinity to the same GC-rich binding 

sequences, and therefore they can act synergistically or antagonistically to activate 

transcription, depending on the nature of the cell and the promoter context. To investigate 
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whether synergism or competition exists between these Sp family members to modulate 

expression of the PKCδ promoter, cotransfections of NIE115 were performed with various 

combinations of these Sp transcription factors, together with the PKCδ reporter construct 

pGL3-147/+289. As shown in Fig. 4C, coexpression of 4 µg of pN3-Sp1 and pN3-Sp3 FL 

expression vectors stimulated PKCδ promoter transcription by 2.7-fold, which approximates 

the combined contributions from transfection of individual Sp3 (1.5-fold induction) and Sp1 

(1.4-fold induction). These results indicate that the effects of Sp1 and Sp3 are additive to 

activate expression of the PKCδ promoter. Also, cotransfection of Sp4 with Sp1 or Sp3 (Fig. 

4C), as well as cotransfection of Sp3 with Sp2 (Fig.S1), results in a similar additive induction 

of PKCδ promoter transcription. Thus, the Sp family members exert additive response rather 

than synergistic or competitive effects on the transcription of the PKCδ promoter in NIE115 

cells.  

 To further clarify the contributions of the different Sp-regulatory elements, including 

the proximal CACCC box and four distal GC boxes, to the Sp-mediated increase in PKCδ 

promoter activity in NIE115 cells, we performed site-directed mutagenesis of these sites in 

the context of the pGL3-147/+209 and pGL3+165/+289 constructs. The former possesses the 

proximal CACCC site, whereas in the latter only the four GC boxes are present (Fig. 5A). 

The pGL3-147/+209 construct displayed much higher responsiveness to Sp1, Sp3, and Sp4 

than did the pGL3+166/+289 construct in transfected NIE115 cells, although a similar level 

of Sp2-mediated activation was obtained for these two constructs (Fig. 5B-5C). As expected, 

mutation of the CACCC site in region -147/+209 (mCACCC) exhibited greatly reduced basal 

and Sp1-, Sp3-, or Sp4-mediated transcriptional activities relative to the wild-type 
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pGL3-147/+209 construct. Moreover, complete loss of Sp2-mediated activation was 

observed with the same mutant (Fig. 5B). These results indicate that the proximal CACCC 

element is able to respond to Sp1-, Sp2-, Sp3-, and Sp4-mediated activation of PKCδ 

promoter. In addition, because the CACCC mutation did not completely abolish the 

responsiveness to Sp1, Sp3, and Sp4 overexpression, there may be additional GC boxes 

present in pGL3-147/+209. In the +165/+289 region, similar to previous experiments, triple 

mutants mGC123, mGC124, mGC134, or mGC134, in which only site GC(4), GC(3), GC(2), 

or GC(1) is still active, respectively, all resulted in a strong negative effect on basal promoter 

activity. Somewhat surprisingly, these mutants did not decrease the inducibility of wild-type 

pGL3+165/+289 by Sp1, Sp3, or Sp4. However, this was not the case of Sp2-mediated 

activation where these triple mutants abolished all Sp2-mediated transactivation potential. On 

the other hand, the Sp2 expression vector activated the single mutants mGC(1), mGC(2), 

mGC(3), or mGC(4) to a similar extent as the wild-type pGL3+165/+289 promoter construct 

(Fig. 5D). These results indicate that each of the four distal GC boxes is sufficient to mediate 

response to Sp1, Sp3 or Sp4 overexpression, whereas cooperative interactions among the 

different GC sites are required to mediate the transactivation effect of Sp2 on the PKCδ 

promoter.   

 

Functional analysis of the mouse PKCδδδδ promoter in Drosophila SL2 cells  

 To further address the transcriptional functions displayed by members of the Sp 

families of transcription factors in regulation of mouse PKCδ gene transcription, Drosophila 

SL2 cells, which are deficient in endogenous Sp-related proteins (Suske, 2000), were 

utilized. The SL2 cells are devoid of many ubiquitous mammalian transcription factor 
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activities (Courey and Tjian, 1988; Noti, 1997) and thus, their transcriptional properties can 

be investigated in the absence of interference by endogenous factors. Varying amounts of 

expression vectors (1- 4µg) under the control of insect actin promoter for Sp1 (pPac-Sp1), 

Sp2 (pPac-Sp2), Sp4 (pPac-Sp4), the long (pPac-USp3) and short isoforms of Sp3 

(pPac-Sp3), the full length of Sp3 (pPac-Sp3FL encoding long and short isoforms of Sp3 like 

the mammalian expression vector pN3-Sp3 FL in Fig. 4) and empty pPac0 vector together 

with the PKCδ promoter construct pGL3-147/+289 were individually transfected into SL2 

cells. The β-galactosidase insect expression vector p97b was included to monitor transfection 

efficiency. Normalized luciferase activities were compared with those obtained with empty 

vector pPac0. As shown in Fig. 6A, addition of either pPac-Sp1 or pPac-Sp4 slightly 

increased PKCδ promoter activity in a dose-dependent manner. The optimal stimulation 

(2.3-fold) was saturated at 2 µg of pPac-Sp1 or pPac-Sp4. Interestingly, a dual effect was 

seen when different isoforms of Sp3 were transfected into SL2 cells. Increasing amounts of 

the short isoform of Sp3 plasmid (pPac-Sp3) had no effect on transactivation of PKCδ 

promoter. In contrast, cotransfection of pGL3-147/+289 with the long isoform of Sp3 

plasmid (pPac-USp3) induced a maximal 136.2-fold increase in luciferase activity. In 

addition, the pGL3-147/+289 promoter activity was also activated in a dose-dependent 

manner by expression with either pPac-Sp2 or pPac-Sp3FL, reaching maximal 6.9- and 

5.0-fold stimulation with 4 µg of pPac-Sp2 or pPac-Sp3FL, respectively. These results 

indicate that the long isoform of Sp3, but not the short isoform of Sp3, is a potent activator of 

the PKCδ promoter in Drosophila SL2 cells, and that Sp1, Sp2 and Sp4 exert weak positive 

effects on the transactivation of the PKCδ promoter.  
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 Because overexpression of Sp1, Sp2, or Sp4 only modestly increased PKCδ promoter 

activity in SL2 cells, we next investigated the interplay between them with the long isoform 

of Sp3 in PKCδ gene regulation. As shown in Fig. 6B, cotransfections of varying amounts of 

pPac-Sp1 (1-2 µg) with a fixed amount of the pPac-USp3 (0.1 µg) had no effect on promoter 

activation of pGL3-147/+289. Likewise, there was no significant stimulation of luciferase 

activity when 1 µg of pPac-Sp4 was cotransfected with 0.1 µg of pPac-USp3, whereas, 

similar to the mammalian expression system, an additive transactivation was seen after 

cotransfection of 2 µg of pPac-Sp4 with pPac-USp3. In contrast, combining pPac-USp3 with 

either 1 µg (6.4-fold induction) or 2 µg (17.0-fold induction) of pPac-Sp2 resulted in a 

synergistic transactivation of PKCδ promoter activity. This is different from the data in 

mammalian cells (Fig. S1), indicating that two different mechanisms may be operative in 

insect and mammalian cells.  

 

Mithramycin A inhibits  PKCδδδδ gene expression 

 To further confirm the role of Sp transcription factors on PKCδ expression, we 

examined the inhibition of the exogenous PKCδ promoter activity by mithramycin A, which 

is known to bind to the GC-rich motif and inhibit Sp transcription factor binding (Ray et al., 

1989; Blume et al., 1991). The transiently transfected NIE115 cells were treated with 

increasing doses of mithramycin A, and the effects of mithramycin A on PKCδ promoter 

activity were analyzed by luciferase assays. The mithramycin A concentrations used were not 

toxic to NIE115 cells. As shown in Fig. 7, addition of mithramycin A to transfected cells led 

to a dose-dependent decrease in promoter activity for both reporter construct pGL3-147/+289 
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(Fig.7A) and full length pGL3-1694/+289 (Fig.7B). At the highest dose of mithramycin A (5 

µM), the transcriptional activity of pGL3-147/+289 and pGL3-1694/+289 was dropped by 

60% and 80%, respectively. In addition, we also performed a real-time RT-PCR assay to 

investigate the effects of mithramycin A on the endogenous PKCδ expression in NIE115 

cells (Fig. 7C). Dose studies indicated that incubation with the highest dose of mithramycin 

A (5 µM) for 24 h resulted in a modest but significant reduction in PKCδ mRNA expression 

by ~30%. Furthermore, the inhibition of PKCδ endogenous expression by mithramycin A 

was confirmed in additional experiments in primary striatal cell culture. As shown in Fig. 

7D, similar to the trend seen in the NIE115 cells, the highest dose of mithramycin A (5 µM) 

induced a ~30% decrease in PKCδ mRNA. Immunocytochemical analysis of PKCδ 

immunoreactivity of striatal neurons substantiated the inhibitory effect of mithramycin A on 

PKCδ gene expression (Fig. 7E, left panel). Quantification of the PKCδ fluorescent intensity 

with Metamorph Image analysis software revealed a ~35% (p<0.01) reduction in PKCδ 

immunoreactivity in 5 µM mithramycin A-treated neurons (Fig. 7E, right panel). Altogether, 

these results again established that PKCδ expression is Sp-factors dependent. In addition, 

because the repression of PKCδ transcripts at the endogenous level by mithramycin A (Fig. 

7C) was far less pronounced than that of the exogenous promoter reporter activity 

(Fig.7A-B), regulation of the endogenous PKCδ may also be controlled by additional 

mechanisms that are not manifested in exogenous reporter plasmids during a transient 

luciferase assay.  
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Binding of Sp family of transcription factors to the PKCδδδδ promoter in NIE115 cells  

 To directly address whether Sp family proteins are associated with the PKCδ 

promoter in vivo, we performed a chromatin immunoprecipitation assay. NIE115 cells were 

transfected with either the expression vectors for Sp proteins or the empty vector, and 

proteins were then formaldehyde cross-linked to chromatin. The immunoprecipitation was 

performed with antibody directed against Sp1, Sp3, or Sp4. The precipitated DNA was 

isolated and subjected to PCR analysis with the primer set P+2F/P+289R encompassing the 

promoter region +2 to +289. In the empty vector control samples, an expected 312-bp DNA 

fragment was amplified from DNA immunoprecipitated by Sp3 or Sp4 antibody, but not 

from Sp1 immunoprecipitation (Fig. 8A, lane 2, 3, and 4). This result correlates with the 

previous observation that Sp1 factor is present at extremely low or undetectable levels in 

NIE115 cells (Fig. 4B). Furthermore, significantly increased levels of amplification of the 

PKCδ promoter were observed in DNA immunoprecipitated by any of the Sp antibodies 

from Sp-enriched cells when compared with levels seen for empty vector transfected controls 

(Fig. 8A, lane 2 vs 7; lane 3 vs 10; and lane 4 vs 13). Together, the ChIP results provide 

evidence for direct in vivo association of Sp proteins with the PKCδ promoter in the 

chromatin of NIE115 cells.  

 For an additional experiment to further characterize the binding of Sp proteins to the 

PKCδ proximal promoter region, we performed gel shift assays using a double-stranded 

32-bp IRyeTM 700-labeled oligonucleotide (+205/+236) (see Table S2 for all 

oligonucleotides used in EMSA experiments) containing the two proximal Sp binding sites 

GC(1) and GC(2) as probe. As shown in Fig. 8B (lane 2), a shift protein-DNA complex band 

was detected after incubating the probe with NIE115 nuclear extracts. This shifted band was 
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almost completely abolished either by addition of an excess of the unlabeled +205/+236 

self-oligonucleotide or by a Sp1 consensus oligonucleotide, establishing the nucleic 

acid-protein binding specificity (Fig. 8B, lane 3 and 5). In contrast, when a 100-fold molar 

excess of unlabeled mutant +205/+236 self-oligonucleotide, in which the GC(1) and GC(2) 

motifs were double mutated (Fig 8B, lane 4) or unlabeled mutant Sp1 consensus 

oligonucleotide (Fig.8B, lane 6) was used, the formation of specific complex was only 

partially blocked. Moreover, the addition of excess of either an unlabelled PKCδ +218/+238 

oligonucleotide or unlabelled PKCδ +201/+220 oligonucleotide corresponding to the single 

GC(2) or GC(1) motif, respectively, (Fig. 8B, lane 7 and 8), failed to completely abrogate the 

formation of the DNA-protein complex, suggesting that GC(1) and GC(2) boxes are both 

functional binding sites for the DNA-protein interaction of this complex. In addition, another 

shifted band without competition by excess of the unlabeled +205/+236 oligonucleotide was 

considered as nonspecific binding and marked as N.S. in Fig. 8B.  

 

Coactivators p300/CBP stimulate PKCδ promoter activity through Sp binding sites in 

NIE115 cells 

 Because p300/CBP can function as co-activators of Sp transcription factors, we next 

analyzed whether they play a role in regulating mouse PKCδ gene expression by studying the 

effect of ectopic p300/CBP expression on promoter activation of pGL3-147/+289 construct 

in NIE115 cells. As shown in Fig. 9A-B, both p300 and CBP significantly enhance the PKCδ 

promoter activity. Interestingly, when a mutant p300 protein without intrinsic HAT activity 

was overexpressed, an even stronger up-regulation of PKCδ promoter activity was seen (Fig. 

9A), suggesting that the HAT activity of p300 is not required for transactivating PKCδ 
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promoter. Moreover, to assess whether p300/CBP meditate their transcriptional activation 

through the Sp sites, two luciferase reporter constructs, Sp1-Luc and mSp1-Luc, which 

contain three consensus Sp1 binding sites and three mutant Sp1 sites, respectively, were 

utilized. As shown Fig. 9C-D, similar to the PKCδ promoter construct pGL3-147/+289, 

overexpression of p300/CBP significantly stimulated the wild-type Sp1-Luc activity, whereas 

the mutant mSp1-Luc completely lost the responsiveness to increased expression of 

p300/CBP, suggesting that the stimulatory effect of p300/CBP may be mediated through the 

Sp biding sites on PKCδ promoter.   

 

Ectopic PKCδ expression increased vulnerability of dopaminergic neurons to oxidative 

stress-stimulated degeneration 

 Oxidative stress, arising due to excessive production of ROS and/or defective ROS 

removal has long been implicated in the pathogenesis of many neurodegenerative diseases, 

including PD (Jenner, 2003; Greenamyre and Hastings, 2004). Based on our observation that 

nigral dopaminergic neurons display high levels of PKCδ expression (12), and that 

proteolytic activation of this kinase plays a key role in meditating oxidative stress-dependent 

neurodegeneration (Kaul et al., 2005), we further assessed whether the extent of PKCδ 

expression correlates with H2O2-induced degeneration. To address this, we performed ectopic 

expression of PKCδ in MN9D dopaminergic neurons and investigated its effect on 

H2O2-induced apoptotic cell death. Fluorescence microscopic imaging of 

PKCδ-GFP-transfected cells revealed that ~60% of cells were expressing PKCδ-GFP 

proteins (Fig. 10, right panel), confirming the high efficiency of ectopic expression of PKCδ 

in MN9D cells. Quantification of H2O2-induced cell death in the EGFP-C1 control 
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vector-transfected cells by DNA fragmentation assay showed that H2O2 treatment 

dose-dependently induced neuronal degeneration, having a maximum (~300% of untreated 

cells) at dose 2 mM. In contrast, overexpression of PKCδ induced an increased level of 

H2O2-induced DNA fragmentation (Fig. 10, left panel). Together, these results suggest that 

the level of PKCδ gene expression may have important regulatory roles in oxidative 

stress-dependent neurodegeneration.  

 

Discussion 

 

 The present study addresses the regulatory cis-acting elements and candidate 

regulatory factors involved in the transcription of the mouse PKCδ gene in neuronal cells. 

PKCδ has been widely identified as a pro-apoptotic effector of signals in various cell types 

(DeVries et al., 2002; Brodie and Blumberg, 2003; Kanthasamy et al., 2003). Recent 

evidence supports a prominent role for caspase-dependent PKCδ activation in oxidative 

stress-induced dopaminergic cell death in experimental models of PD because of a high 

expression of the kinase in nigrostriatal dopaminergic neurons (Anantharam et al., 2002; 

Kaul et al., 2003). Despite extensive investigations of the molecular mechanisms of 

activation of PKCδ, relatively little information is available on the mechanisms that control 

PKCδ expression at the transcriptional level (Gavrielides et al., 2006; Liu et al., 2006; 

Ponassi et al., 2006; Horovitz-Fried et al., 2007). Previous studies on the regulatory elements 

of the PKCδ gene are all based on analysis of the 5’-flanking sequences upstream of the TSS; 

however, no attempt was made to examine the importance of the GC-rich domains in the first 

exon.  Emerging evidence indicates that the non-coding region in the exon downstream of 
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TSS has been recognized as a major regulatory region of various gene expressions 

(MacCarthy-Morrogh et al., 2000; Saur et al., 2002; Whetstine et al., 2002; Solovyev and 

Shahmuradov, 2003; Karban et al., 2004). Thus, we cloned and characterized the mouse 

PKCδ promoter including the first exon GC-rich sequences, in an effort to define 

mechanisms underlying the transcriptional regulation of PKCδ.   

 In this report, ~2.0-kb fragment of mouse genomic DNA encompassing the 

5’-flanking region and the partial first exon of the PKCδ gene, was isolated and cloned into a 

luciferase reporter vector. The PKCδ promoter does not have a consensus TATA motif in the 

vicinity of the TSS (Suh et al., 2003). Our own sequence analysis found further upstream 

TATA-like elements at -1651, -1185, and -932 (data not shown). However, these TATA-like 

motifs appear to be non-functional, as no significant transcriptional activity was observed in 

the region between -1694 to -659 (Fig 1B, pGL3-1694/-659). Additionally, other known core 

promoter motifs, such as the CAAT box, Inr, and DPE, were not identified at consensus 

positions within the PKCδ promoter.  

 We showed that the 2.0-kb PKCδ promoter/luciferase construct displayed significant 

transcriptional activity (Fig. 1B, ~30 times higher than the promoterless pGL3-Basic vector) 

upon transfection into the PKCδ-expressing neuronal cell lines NIE115 and MN9D. Deletion 

analysis of this 2.0-kb region revealed multiple positive and negative elements, all of which 

contribute to the PKCδ expression. A strong negative element (NREI) present at -660 to -147 

is capable of repressing the gene activity by 100%. Negative elements have also been 

implicated in the regulation of several other PKC family genes. For example, a silencer-like 

element at -1821 to -1702 was identified for the human PKCη promoter (Quan and Fisher, 
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1999). Furthermore, we characterized that this element is not in itself a true silencer but 

rather functions as a PKCδ-promoter-specific repressive element. Computational analysis of 

this region did not reveal significant sequence identity with any known silencer motif, 

however, it contains multiple TFBS (data not shown), such as an overlapping STAT1/Ets site 

(-656 to -639) and an adjacent NF-Y site (-637 to -627), as well as a downstream WHNF site 

(-596 to -591). Notably, STAT1, Ets and NF-Y are all known to serve a dual role in 

transcriptional regulation, as an activator or as a repressor (Mavrothalassitis and Ghysdael, 

2000; Ramana et al., 2000). Whether these elements are involved in the repressing activity 

has yet to be determined. Studies are under way to dissect the exact location of this negative 

element and the proteins that bind to it. Additionally, located farther upstream of NREI is 

another negative regulatory element (NREII, between -1694 and -1193). This element, 

however, is relatively weak.  

 In deletion studies we also identified two novel positive regulatory elements within 

the 2.0-kb region of the PKCδ promoter. We previously identified a basal PKCδ promoter 

(-147 bp to the TSS) that displays ~6 times greater activity over the pGL3-Basic vector in 

NIE115 and MN9D cells (Fig.1B, pGL3-147/+2), and a NFκB and NERF1a sites are 

responsible for its activity (H. Jin et al., unpublished data). In the present study, we found 

that the downstream fragment in exon 1 from bp +2 to +289 was capable of dramatically 

enhancing the basal PKCδ promoter activity in both NIE115 and MN9D cells (Fig. 1B), 

suggesting that this region contains most of the positive cis-acting elements necessary for 

PKCδ expression. Notably, when the location of this 288-bp positive element was altered, its 

enhancing activity was entirely lost (Fig. 3D). This suggests that proper distance arrangement 
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of this element with respect to the basal PKCδ promoter is important. In addition the region 

between -147 and +289 appears to confer the greatest transcriptional activity in neurons, thus 

functioning as a PKCδ core promoter. Of particular interest was an additional positive 

regulatory element from bp -1192 to -660. This element, which resides directly adjacent to 

the NREI in the 52-bp region between -712 and -660, was able to significantly overcome the 

activity of NREI. Curiously, this region acts mechanistically as a novel anti-repressive 

element. To date, only a few anti-repressive elements have been reported for eukaryotic 

genes (Wu et al., 2004). At this time, we could not provide any further characterization of 

this interesting element or its binding protein. Future studies will address this issue. Taken 

together from all these studies, the transcription of PKCδ is tightly controlled by multiple 

elements acting in concert to ensure its differential expression pattern in a variety of 

biological processes.   

 Next, the major positive regulatory element immediately downstream of the PKCδ 

transcription start site (bp from +2 to +289) was analyzed in detail. In silico analysis 

identified four GC boxes in close proximity to each other at +208/+216, +225/+233, 

+239/+247, and +256/+264, as well as an upstream CACCC box (also called the GT box) at 

+35/+43 (Fig. 3A). The functional importance of these multiple Sp binding motifs was 

assessed by site-specific mutagenesis and transfection of the mutated constructs into NIE115 

and MN9D cells (Fig. 3B). The results showed that all these motifs are functional in 

activating PKCδ transcription, and that the five Sp binding sites appear functionally different. 

The magnitude of activating effects is in the order GC(1) or GC(2) > GC(3) > GC(4) or 

CACCC. Furthermore, an essential role for the cooperative action of all these Sp sites for the 
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transactivation of PKCδ transcription was confirmed. In addition to the Sp binding sites, in 

silico analysis also revealed the presence of multiple other TFBS within this +2/+289 

segment (data not shown). Conceivably, these cis elements may also contribute to the 

regualtion of PKCδ expression.  

 The Sp family of transcription factors including Sp1, Sp2, Sp3 and Sp4 are all 

structurally similar and are the most well-characterized GC-rich-motif binding proteins. To 

elucidate the roles of Sp family members in transcriptional regulation of PKCδ, 

cotransfection studies using a reporter containing the PKCδ promoter -147/+289 along with 

Sp expression vectors were performed (Fig. 4A). These studies revealed a similar activation 

profile of Sp transcription factors in NIE115 and MN9D cells, although less pronounced 

transcriptional activation was observed in the latter. In both cell lines, Sp3 is the strongest 

transactivator, whereas overexpression of Sp1, Sp2, and Sp4 displayed much less activation 

of the PKCδ promoter. It should be noted that both NIE115 and MN9D cells expressed easily 

detectable levels of endogenous Sp3 and Sp4, but undetectable levels of endogenous Sp1(Fig. 

4B), suggesting that Sp3 and Sp4 may be responsible for a major part of PKCδ promoter 

activity in these two neuronal cell lines. The contribution of the multiple Sp-binding sites 

found within the PKCδ promoter to the Sp-mediated promoter activity was further assessed 

using substitution mutant constructs. By using a smaller construct, namely pGL3-147/+209, 

which possesses the upstream CACCC motif but lacks the downstream four GC boxes, we 

found that the CACCC motif is required for complete Sp2-mediated promoter activity in this 

promoter context (-147 to +209). In contrast, this site is insufficient for complete Sp1, Sp3 

and Sp4 transactivation (Fig. 5B). This suggests additional Sp-like binding sites within this 

region that are important for Sp transactivation of the PKCδ promoter. On the other hand, 
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cotransfection of Sp expression plasmids with pGL3+165/+289 triple mutant constructs 

confirmed that each of the four downstream GC boxes is sufficient for complete Sp1, Sp3 

and Sp4 transactivation. However, cooperative action of different GC boxes is required for 

mediating Sp2 transactivation, since triple GC boxes mutation failed to mediate any Sp2 

transactivation (Fig. 5C-D). This different mode of action between Sp2 and other Sp family 

members is not surprising, as they have different DNA binding specificity and affinities. For 

example, Sp1, Sp3 and Sp4 bind GC boxes with similar specificity and affinities, whereas 

Sp2 binds with much lower affinity (Hagen et al., 1992).  

 To precisely analyze the transcriptional roles of the Sp family of transcription factors 

in a Sp-deficient background, transfection assays were carried out in Drosophila SL2 cells 

(Fig. 6). We demonstrated a dual function of Sp3 in regulating PKCδ transcription: the long 

isoforms of Sp3 most potently activate the PKCδ promoter, whereas the short isoforms of 

Sp3 are transcriptionally inactive on their own, which may be due to the absence of the 

N-terminal transactivation A domain present in the long isoforms of Sp3 (Sapetschnig et al., 

2004). These data together suggest that the Sp3 isoform expression may have a dramatic 

effect on PKCδ expression. Indeed, alteration of the Sp3 isoform ratio has been observed 

under certain conditions (Sapetschnig et al., 2004). In combination experiments (Fig. 6B), 

overexpression of Sp1 had no effect on the transcriptional activation by the long Sp3 

isoform, although Sp4 was able to transactivate the promoter activation by the long Sp3 

isoform in an additive manner, only when a higher amount of Sp4 expression vector was 

transfected. In contrast, obvious synergistic activation of PKCδ promoter transcription was 

observed when combining Sp2 with a long isoform of Sp3. However, this finding is not seen 

in mammalian cells, probably because there is already enough endogenous Sp2 and Sp3 in 



www.manaraa.com

85 

these cells. 

 Several additional lines of evidence solidify the essential role of Sp family 

transcription factors in controlling PKCδ expression. First, by using the Sp inhibitor 

mithramycin A, we demonstrated that transcription of the PKCδ promoter is dependent on Sp 

activity (Fig. 7A-B). At the highest dose of 5 µM mithramycin A, more than an 80% 

decrease of full length PKCδ promoter activity was achieved in NIE115 cells. Second, the 

more importantly, mithramycin A also suppresses, albeit to a much lesser extent, the 

endogenous PKCδ expression in NIE115 cells and primary striatal neurons (Fig. 7C-E). This 

information also suggests that the endogenous PKCδ gene is under different layers of 

regulatory control in addition to the 5’-promoter in the context of an exogenous reporter 

plasmid. Epigenetic regulatory mechanisms, such as DNA methylation or histone 

modifications, might be involved in the regulation of PKCδ expression and could account for 

this complexity. The mouse PKCδ promoter is GC rich and contains a putative CpG island 

that is partly methylated in NIE115 and MN9D cells (data not shown). Furthermore, 

treatment of NIE115 cells by the methylation-specific inhibitor 5’-aza-2’-deoxycytidine 

(5-Aza-dC) significantly increased the endogenous PKCδ mRNA expression and attenuated 

its methylation status (Fig. S2). DNA methylation has been shown to interfere with the 

binding of Sp1 to DNA (Kudo, 1998). Experiments are in progress to elucidate whether CpG 

methylation of the PKCδ promoter could affect the function of Sp transcriptional factors in 

regulation of PKCδ expression. Third, chromatin immunoprecipitation assays confirmed that 

transcription factors Sp1, Sp3 and Sp4 bind to the PKCδ promoter for transcriptional 

activation in NIE115 cells, in the environment of chromatin in vivo (Fig. 8A). Finally, gel 
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mobility shift assays with nuclear extracts from NIE115 cells detected the formation of one 

specific complex with the PKCδ +205/+236 oligonucleotide, of which relevance to Sp 

factors was further confirmed by using specific competitors (Fig. 8B).  

 The Sp-factors regulate a variety of genes that are involved in the apoptotic cascade. 

This has been reported for the caspase-3 (Sudhakar et al., 2008), caspase-8 (Liedtke et al., 

2003), FasL (Kavurma et al., 2001), and finally as shown in the present study for PKCδ. 

While the Sp1 factor functions as activator of transcription, the function of Sp3 is less clear. 

It is generally accepted that Sp3 is the only protein in the Sp subfamily that can either 

positively or negatively modulate the gene expression. The role of Sp3 as an activator or 

repressor remains elusive. Evidence suggests that its activity strongly depends on the 

structure and arrangement of Sp-recognition sites as well as the cell type-specific difference 

(Sapetschnig et al., 2004). Our results suggest that for the mouse PKCδ basal promoter, Sp3 

acts as a strong activator. In addition, regulation of Sp1 and Sp3 activity is achieved by 

post-translational modifications. For examples, the post-translational modification to 

Sp1/Sp3 by acetylation stimulates their activity (Ammanamanchi et al., 2003; Hung et al., 

2006), whereas sumoylation of Sp1/Sp3 causes their inactivation (Spengler and Brattain, 

2006). Although our Sp1 or Sp3 acetylation immunoprecipitation and Western blot analysis 

failed to detect any endogenous acetylation of Sp1 or Sp3 in normal NIE115 cells (data not 

shown), we could not exclude the possibility that Sp1 or Sp3 is acetylated in response to 

specific stimuli, such as oxidative stress (Ryu et al., 2003). In addition to posttranslational 

modifications, regulation of the activities of Sp family members also includes protein-protein 

interactions. For examples, Sp1 and Sp3 bind directly to p300 and its homolog CBP (Suzuki 

et al., 2000; Walker et al., 2001). We previously demonstrated that rat PKCδ gene expression 
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is p300-dependent, and that p300 associates endogenously with the rat PKCδ gene. 

Nevertheless, the roles of p300/CBP in the facilitation of PKCδ gene expression are still 

poorly understood. In the present study, our evidence suggests that forced expression of p300 

or CBP resulted in a dose-dependent activation of mouse PKCδ promoter (Fig. 9A-B) in the 

NIE115 cells. Furthermore, it appears that the GC boxes are crucial for the p300/CBP 

activation, as overexpression of CBP/p300 did not activate the Sp1-reporter containing 

mutations in the GC boxes (Fig. 9C-D). More interestingly, our results also indicate that 

p300 may activate PKCδ transcription by HAT-independent mechanisms (Fig. 9A), which 

may partly explain why we could not detect any endogenous acetylation of Sp1 or Sp3 in 

NIE115 cells.  

 In summary, we have functionally characterized for the first time the regulation of 

PKCδ gene promoter in neuronal cells. Our results clearly indicate that multiple positive and 

negative regulatory elements contribute to PKCδ promoter expression. In particular, we have 

identified the core promoter located between nucleotides -147 and +289, and demonstrated a 

functional role for five Sp sites within this region in the regulation of constitutive PKCδ 

expression. We have also shown that Sp1, Sp3, and Sp4 directly bind to the PKCδ promoter 

through the multiple Sp sites and positively regulate PKCδ expression. Furthermore, ectopic 

expression studies revealed that the expression level of the PKCδ gene correlates well with 

the sensitization of dopamine neurons to oxidative stress-induced neuronal cell death (Fig. 

10). Taken together with our previous observation that PKCδ plays a critical role in the 

oxidative stress-induced dopaminergic degeneration in PD (Yang et al., 2004; Kaul et al., 

2005), and that PKCδ inhibition has been explored in preclinical models of PD (Kanthasamy 

et al., 2006; Zhang et al., 2007a), these findings have important implications for the utility of 
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PKCδ as a target in developing novel drug therapies for PD. 
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Figure 1: Deletion analysis of PKCδδδδ promoter activity in NIE115 and MN9D cells  

A, The schematic diagram of mouse PKCδ gene structure on chromosome 14. Exons are 

marked by boxes and number below each box, and black and red regions indicate the coding 

and noncoding exons, respectively. Arrow indicates the position of the translation start codon 

(ATG). B, Schematic representation of PKCδ promoter deletion/luciferase reporter 

constructs. An extensive series of PKCδ promoter deletion derivatives was generated by PCR 

methods and inserted into the pGL3-Basic luciferase vector. The 5’ and 3’ positions of the 

constructs with respect to the transcription start site are depicted. C, Each construct as shown 

in B was transiently transfected into NIE115 (black bar) and MN9D (blue bar) cells. Cells 

were harvested 24 h after transfection and luciferase activities were determined. The plasmid 

pcDNA3.1-βgal was included in each transfection to normalize the promoter activity with 

transfection efficiency. The activity of full-length promoter construct (pGL3-1694/+289) was 

arbitrarily set to 100, and the relative luciferase activity of the other constructs was calculated 

accordingly. The results represent the mean ± SEM of three independent experiments 

performed in triplicate.   
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Figure 2: Mapping of the identified repressive and anti-repressive elements within the 

PKCδδδδ promoter and evidence for the PKCδδδδ promoter-specific repressive element 

A, The schematic representation of PKCδ promoter 5’ deletion constructs used for the fine 

mapping study. The 5’ and 3’ positions of the constructs with respect to the transcription start 

site are depicted. B, Each construct as depicted in A was transiently transfected into NIE115 

(black bar) and MN9D (blue bar) cells. Cells were harvested 24 h after transfection for 

assaying luciferase activities. The plasmid pcDNA3.1-βgal was cotransfected into cells for 

data normalization. The activity of pGL3-147/+289 was arbitrarily set to 100, and the relative 

luciferase activity of the other constructs is presented. The results represent the mean ± SEM 

of three independent experiments performed in triplicate. C, The isolated repressive element 

of the PKCδ promoter does not function as a locus-independent DNA element. The 

sequences around the identified repressive element (-660 to –561 of the PKCδ promoter) 

were directly fused to the 5’-end of the region between -147 to +289 of the PKCδ promoter, 

and cloned into the pGL3-Basic luciferase vector to obtain pGL3-660/-561 plus -147/+289. 

NIE115 (black bar) and MN9D cells (blue bar) were transfected with pGL3-147/+289 or 

pGL3-660/-561 plus -147/+289 for 24 h, and luciferase activity was determined. Schematic 

diagram of these constructs are shown at the right. The activity of pGL3-147/+289 was set to 

100, and the relative luciferase activity of pGL3-660/-561 plus -147/+289 is presented. The 

results represent the mean ± SEM of three independent experiments performed in triplicate. 

D, The isolated repressive element of the PKCδ promoter does not act on a heterologous 

promoter (SV40). The sequences of the putative PKCδ repressive element (-660 to –561 of 

the PKCδ promoter) were cloned upstream of the SV40 promoter in pGL3-Promoter vector 
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to obtain pGL3-Promoter-660/-561. NIE115 (black bar) and MN9D (blue bar) cells were 

transfected with pGL3-Promoter or pGL3-Promoter-660/-561 for 24 h, and luciferase activity 

was determined. Schematic diagram of these constructs are shown at the right. The activity 

of pGL3-Promoter was set to 100, and the relative luciferase activity of 

pGL3-Promoter-660/-561 is given. The results represent the mean ± SEM of three 

independent experiments performed in triplicate.  
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Figure 3: Functional analysis of the PKCδδδδ proximal promoter 

A, Sequence comparison of the mouse PKCδ promoter region between +2 to +289 with the 

corresponding regions of the rat and human PKCδ promoters. Sequences were aligned with 

the DiAlign TF program. Sequence differences are indicated and gaps introduced to 

maximize homology are marked by dashes. Phylogenetically conserved TFBS as well as the 

CACCC box present only in the mouse PKCδ promoter are indicated (overlined). B, 

Schematic representation of the wild-type or mutated PKCδ promoter reporter constructs 

containing targeted substitutions in the Sp binding sites. The potential Sp sites are indicated 

at the top. The mutated site is marked with ×, and the non-mutated Sp sites are indicated by 

either circle or square. C, The wild-type or mutated reporter constructs as shown in B were 

individually transfected into NIE115 (black bar) and MN9D (blue bar) cells, and luciferase 

activities were assayed after 24 h. To adjust for transfection efficiency, the plasmid 

pcDNA3.1-βgal was included in each transfection. The activity of wild-type construct 

(pGL3-147/+289) was arbitrarily set to 100, and promoter activity of the mutants is 

expressed as a percentage of the wild-type construct. The results represent the mean ± SEM 

of three independent experiments performed in triplicate. The sequences of wild-type and 

mutated Sp site are shown at the right side of the bar graph. The substituted nucleotides are 

shown in bold. D, Absence of enhancer elements in the GC-rich sequence (+2/+289) of the 

mouse PKCδ promoter in NIE115 cells. The PKCδ promoter GC-rich sequence (+2 to +289) 

was cloned in both orientations into the SalI site of the pGL3-147/+2 reporter constructs as 

described under Experimental Procedures. These constructs were individually transfected 

into NIE115 cells for 24 h, and luciferase activity was determined. Luciferase activity was 
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normalized with β-galactosidase. The right panel shows schematic diagram of the constructs. 

The activity of pGL3-147/+2 was set to 1, and the relative luciferase activity of all other 

constructs were calculated and expressed as fold of pGL3-147/+2. The results represent the 

mean ± SEM of three independent experiments performed in triplicate.  
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Figure 4: PKCδδδδ promoter activity is stimulated by Sp-family members of transcription 

factors in NIE115 and MN9D cells 

A, Variable amounts (µg) of pN3-Sp1, pN3-Sp3 FL, pN3-Sp4, or pcDNA-Sp2 expression 

plasmid or empty vector (pN3 or pcDNA3.1), as indicated, were cotransfected with the 

PKCδ promoter reporter construct pGL3-147/+289 into NIE115 (black bar) and MN9D (blue 

bar) cells. Luciferase activity was measured after 24 h of transfection. The plasmid 

pcDNA3.1-βgal was included in each transfection for data normalization. Values are 

expressed as fold induction relative to that obtained from cells transfected with 8 µg of empty 

vector (EV) and represent the mean ± SEM of three independent experiments performed in 

triplicate. Variations in the amount of total DNA were compensated with the corresponding 

empty vector pN3 or pcDNA3.1. B, Overexpression of Sp factors in transfected NIE115 (left 

panel) and MN9D (right panel) cells was determined by immunoblotting analysis. The cells 

were transfected with Sp expression plasmids in the same manner as A. Whole cell lysates 

were prepared 24 h after transfection and immunoblotted for Sp1, Sp3, Sp4, or β-actin 

(loading control). Both short Sp3 (sSp3) and long Sp3 (lSp3) isoforms are shown. C, The 

expression plasmids pN3-Sp1, pN3-Sp3 FL, pN3-Sp4, and empty vector pN3 were 

cotransfected along with the PKCδ promoter reporter construct pGL3-147/+289 into NIE115 

either alone or in the different combinations, as indicated (µg) below the bar graph. 

Luciferase activity was determined after 24 h of transfection. Data shown represent the mean 

± SEM of three independent experiments performed in triplicate.   
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Figure 5: Effects of site-directed mutagenesis of Sp binding sites on PKCδδδδ promoter 

activity transactivated by overexpression of Sp transcription factors in NIE115 cells 

NIE115 cells were cotransfected with the indicated wild-type or mutated PKCδ reporter 

constructs and 8 µg of pN3-Sp1, pN3-Sp3 FL, pN3-Sp4, pcDNA-Sp2, or empty vector (EV) 

pN3 or pcDNA3.1. Luciferase activities were assayed after 24 h. The plasmid 

pcDNA3.1-βgal was included in each transfection to adjust for transfection efficiency. The 

activity that obtained following cotransfection of the wild-type construct (pGL3-147/+209 or 

pGL3+165/+289) with empty vector (EV) was arbitrarily set to 100, and all other data are 

expressed as a percentage thereof. The results represent the mean ±SEM of three independent 

experiments performed in triplicate. A, Schematic representation of the wild-type PKCδ 

promoter reporter constructs pGL3-147/+209 and pGL3+165/+289. The potential Sp sites are 

depicted by either circle or square. B, NIE115 cells were cotransfected with 4 µg either wild- 

type (pGL3-147/+209) or mCACCC mutated luciferase reporter constructs along with 8 µg 

of the expression plasmids pN3-Sp1, pN3-Sp3 FL, pN3-Sp4, pcDNA-Sp2, or empty vector 

(pN3 or pcDNA3.1). C, Wild-type (pGL3+165/+289) or triple mutated luciferase reporter 

constructs, as indicated, were cotransfected into NIE115 cells along with the expression 

plasmids for Sp-family members of transcription factors. D, Wild-type (pGL3+165/+289) or 

single mutated luciferase reporter constructs, as indicated, were cotransfected into NIE115 

cells along with the pcDNA-Sp2 or empty pcDNA3.1 expression vector.  
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Figure 6: Effects of overexpression of Sp-family members of transcription factors on 

the PKCδδδδ promoter activity in SL2 cells 

A, The PKCδ promoter reporter construct pGL3-147/+289 (4 µg) was cotransfected with 

variable amounts (1-4µg) of Drosophila expression plasmids for Sp1 (pPac-Sp1), the short 

isoform of Sp3 (pPac-Sp3), the long isoform of Sp3 (pPac-USp3), the full length of Sp3 

(pPac-Sp3FL), Sp4 (pN3-Sp4), or Sp2 (pPac-Sp2) in Drosophila SL2 cells. Luciferase 

activity was measured after 48 h of transfection. The Drosophila β-gal expression plasmid 

p97b was included in each transfection for data normalization. Values are expressed as fold 

induction relative to that obtained from cells transfected with 4 µg of empty vector (pPac0) 

and represent the mean ± SEM of three independent experiments performed in triplicate. 

Variations in the amount of total DNA were compensated with the corresponding empty 

vector pPac0. B, The Drosophila expression plasmids pPac-USp3, pPac-Sp1, pPac-Sp4, and 

pPac-Sp2 were cotransfected along with 4 µg of PKCδ promoter reporter construct 

pGL3-147/+289 into SL2 cells either alone or in the different combinations, as indicated (µg) 

below the bar graph. Variations in the amount of total DNA were compensated with the 

corresponding empty vector pPac0. Luciferase activity was determined after 48 h of 

transfection. Transfection efficiency was normalized by β-galactosidase activity. Values are 

expressed as fold induction relative to that obtained from cells transfected with pPac0 alone 

and represent the mean ± SEM of three independent experiments performed in triplicate. 
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Figure 7: Mithramycin A (MA) inhibits expression of the PKCδδδδ gene 

A-B, PKCδ promoter activity is attenuated in NIE115 cells after treatment with mithramycin 

A. The PKCδ promoter reporter construct pGL3-1694/+289 (A) or pGL3-147/+289 (B) was 

transfected into NIE115 cells. After 4 h transfection, the cells were incubated with or without 

Sp-factor inhibitor mithramycin A at concentrations ranging from 0.05 to 5 µM for 24 h. 

Cells were then harvested and luciferase activities were determined. The plasmid 

pcDNA3.1-βgal was included in each transfection to correct the differences in transfection 

efficiencies. Values are expressed as a percentage of the activity of control and represent the 

mean ± SEM of three independent experiments performed in triplicate. (**, p<0.01; ***, 

p<0.001; between the control and mithramycin A-treated samples) C-D, Endogenous PKCδ 

mRNA levels are reduced by mithramycin A. NIE115 cells (C) or primary striatal neurons 

(D) were treated with different concentrations of mithramycin A for 24 h. Real-time RT PCR 

analysis of PKCδ mRNA level was performed. β-actin mRNA level was served as internal 

control. Values are expressed as a percentage of the activity of control and represent the 

mean ± SEM of three independent experiments performed in triplicate. (*, p<0.05; **, 

p<0.01 compared with the control and mithramycin A-treated samples) E, Left panel: 

Exposure of primary striatal neurons to 5 µM mithramycin A reduced PKCδ 

immunoreactivity. Primary striatal cultures were treated with or without 5 µM MA for 24 h. 

Cultures were immunostained for PKCδ (red), and the nuclei were counterstained by Hoechst 

33342 (blue). Images were obtained using a Nikon TE2000 fluorescence microscope 

(magnification 60x). Scale bar, 10µm. Representative immunofluorescence images are shown. 

The insert shows a higher magnification of the cell body area. Right panel: 
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Immunofluorescence quantification of PKCδ fluorescence intensity. Fluorescence 

immunoreactivity of PKCδ was measured in each group using Metamorph software. Values 

expressed as percent of control group are mean ± SEM and representative for results obtained 

from three separate experiments in triplicate (**, p<0.01). 
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Figure 8: Binding of Sp-family of transcription factors to the PKCδδδδ promoter in 

NIE115 cells 

A, ChIP assays in NIE115 cells indicate a physical association of Sp1, Sp3, and Sp4 with the 

PKCδ promoter region. Cross-linked chromatin was isolated from NIE115 cells transfected 

with the expression plasmids for Sp1 (pN3-Sp1), Sp3 (pN3-Sp3 FL), Sp4 (pN3-Sp4), or the 

empty vector pN3, as indicated. Isolated chromatin was enzymaticlly digested and 

immunoprecipitated with anti-Sp1 (lane 2 and 7), anti-Sp3 (lane 3 and 10), anti-Sp4 (lane 4 

and 13), or antibody-free control (lane 6, 9, 12, and 15). The subsequently purified DNA 

from immunoprecipitated samples and unimmunoprecipitated samples (labeled as Input, lane 

5, 8, 11, and 14) was subjected to PCR amplification with primers specific for PKCδ 

promoter region that generates a 312-bp fragment. B, EMSA to test binding of nuclear 

proteins from NIE115 cells with the Sp site of the PKCδ promoter. EMSA was performed 

with an IRye700-labeled probe corresponding to the PKCδ promoter GC (1) and (2) motifs 

and 10 µg of nuclear extract from NIE115 cells. As indicated, various competitors (100-fold 

excess of unlabeled oligos, lane 3-8) were added to the mixture before adding probe. The 

sequences of the competitors are shown in Table S2. The specific and non-specific (labeled 

as N.S.) complexes are indicated by arrows.   
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Figure 9: PKCδδδδ promoter activity is stimulated by p300/CBP in NIE115 cells, and this 

effect is independent of p300 HAT activity and requires functional Sp sites 

A-B, Variable amounts (µg) of expression plasmid for p300 (pCI-p300) and p300 mutant 

(pCI-p300∆HAT) (A), or CBP (pcDNA-CBP) (B) were cotransfected with the PKCδ 

promoter reporter construct pGL3-147/+289 into NIE115 cells. Variations in the amount of 

total DNA were compensated with the corresponding empty vector (EV) pCIneo or 

pcDNA3.1. Luciferase activity was measured after 24 h of transfection. The plasmid 

pcDNA3.1-βgal was included in each transfection for data normalization. Values are 

expressed as fold induction relative to that obtained from cells transfected with 8 µg of empty 

vector and represent the mean ± SEM of three independent experiments performed in 

triplicate. (**, p<0.01; ***, p<0.001; as compared to the EV-transfected samples) C-D, 

luciferase reporter constructs Sp1-Luc or mSp1-Luc was cotransfected with variable amounts 

(µg) of expression plasmid pCI-p300 (C) or pcDNA-CBP (D) were into NIE115 cells. 

Luciferase activity was measured after 24 h of transfection. Values are expressed as percent 

of that obtained from cells cotransfected with 8 µg of EV and wild-type Sp1-Luc construct 

and represent the mean ± SEM of three independent experiments performed in triplicate.  
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Figure 10: Overexpression of PKCδδδδ sensitizes MN9D dopaminergic cells to oxidative 

stress-dependent neurodegeneration 

MN9D cells were transfected with plasmid expressing PKCδ-GFP or control plasmid 

EGFP-C1 for 18 h. The cells were then switched to a serum-free medium and exposed to 

various doses of H2O2, ranging from 0.5 to 2.0 mM for 20 h. Cells were collected and 

assayed for DNA fragmentation (left panel). Data shown represent mean ± SEM from two 

independent experiments performed in quadruplicate (*, p<0.05; **, p<0.01; ***, p<0.001; 

compared with the control and H2O2-treated samples). The overexpression of PKCδ-GFP 

was confirmed by GFP fluorescence imaging (right panel). Images were obtained using a 

Nikon TE2000 fluorescence microscope (magnification 20x). Scale bar, 100µm. 
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Figure S1: Additive activation of PKCδδδδ promoter transcription by Sp2 and Sp3 

The expression plasmids pN3-Sp3, pcDNA-Sp2, and empty vector pN3 or pcDNA3.1 were 

cotransfected along with the PKCδ promoter reporter construct pGL3-147/+289 into NIE115 

either alone or in the different combinations, as indicated below the bar graph. Luciferase 

activity was determined after 24 h of transfection. Transfection efficiency was normalized by 

β-galactosidase activity. Data expressed as fold induction relative to that obtained from cells 

transfected with empty vector alone and represent the mean ± SEM of three independent 

experiments performed in triplicate.  
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Figure S2: Treatment with methylation inhibitor  5’-aza-2’-deoxycytidine (5-Aza-dC) 

significantly increased endogenous PKCδδδδ mRNA and attenuated PKCδδδδ promoter 

methylation in NIE115 cells 

NIE115 cells were treated with varying doses of 5-Aza-dC for 24 h, as indicated, and cells 

were than collected for real-time PCR analysis of PKCδ mRNA (A) or bisulfate-modification 

and subsequent MSP analysis (B) with primers for methylated (M) and unmethylated (U) 

DNA. PCR bands in (B) were analyzed using the one-dimensional image analysis software 

(Kodak Molecular Imaging System), and the relative methylation status was expressed as 

ratio of methylated versus unmethylated. (*, p<0.05; between the control and 

5-Aza-dC-treated samples) 
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   Table S1: List of primer sequences used in the study 
                                                                                                   

F, Forward; R, Reverse; q, quantitative RT-PCR; m, mutant primers; ChIP, primers used for ChIP experiments; 
Methylated and unmethylated, primers used for MSP experiments. 

Primer Sequence (5’-3’)  

P-1694 F GTCTATCTCGAGGATCTGACGCCCTCTTCTGGAGT  

P-1193 R1 GTCCTGATAACTGTCCCCACCCCAT  

P-1217 F ATGGGGTGGGGACAGTTATCAGGAC  

P+289 R GTCTATAAGCTTACCTCACCCAGGTGCCGG  

P-1192F ATATATCTCGAGTGGGGACTTAAATACTAATT  

P-1193R2 ATATATAAGCTTGTCCTGATAACTGTCCCCAC  

P-660F1 ATATATCTCGAGTATCCTCCCAGGAAGAGTTCTCG  

P-660F2 

P-659R 

ATATATGGTACCTATCCTCCCAGGAAGAGTTCTCG 

ATATATAAGCTTTACAAGAGGGTTCTAATAGCC 

 

P-147 F ATATATCTCGAGTCTCGGGCAGGACTGGAACC  

P-148R ATATATAAGCTTGAAGGAGCTGGGAGGTCTCC  
P+2 F 

P+2R 

ATATATCTCGAGTCCTGGGCTCCATTGTGTGTG 

GTCTATAAGCTTAGGCACCGACGGGGCTTCC 

 

P-1072F ATATATCTCGAGCCCCAATGTACATTTAAAATAAGG  

P-882F ATATATCTCGAGGATCTCGTTAAGGATGGTTGTG  

P-822F ATATATCTCGAGTCGGAAGAGCAGTCGGGTGCTC  

P-712F ATATATCTCGAGAGGTAGTTTTCCAGAAGGAAC  
P-560F ATATATCTCGAGGAGCACTGGAGTATTATTCTGAG  

P-460F ATATATCTCGAGAGCCCAGGAAGTCATTTCTTTG  

P-371F ATATATCTCGAGATTTGGTGCTCAGACTTTGGGC  

P-300F ATATATCTCGAGTCTTATGAGCTTGACTGAGCAAGG  

P-250F ATATATCTCGAGAGACAGTGAGATGGGGGCAGA  

P-197F ATATATCTCGAGTGAGACAAACTGGCTAGAACCTC  

P-561R1 

P-561+2F  

ATATATGCTAGCAGGGGGAGAAAGCAGGAGAAT 

TGCTTTCTCCCCCTCCTGGGCTCCATTGTGTGTG 

 

P-561+2R 

P+209R 

CAATGGAGCCCAGGAGGGGGAGAAAGCAGGAGAA 

GTCTATAAGCTTACGTGAGCTGGGGGTCCAGC 

 

P+165F 

mGC(1) F 

mGC(1) R 

mGC(2) F 

mGC(2) R 

mGC(3) F 

mGC(3) R 

ATATATCTCGAGTTGCAACTCAAAGAGGCTGA  

GGACCCCCAGCTCACGTAAGCTTAGCTTCGAAG 

ACGTGAGCTGGGGGTCCAGCGCGTCTCAGC  

TGGGCGGAGCTTCGAAGAAGCTTGCGCCCGTGG 

CTTCGAAGCTCCGCCCACGTGAGCTGGGGG  

AGGGGCGGGCGCCCGTGAAGCTTGTCCTGAGTG 

CACGGGCGCCCGCCCCTTCGAAGCTCCGCC  
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  Table S1 (continued) 
Primer Sequence (5’-3’) Amplicon 

mGC(4) F GGGCGGGTCCTGAGTGGAAGCTTGACCGGGGCC  

mGC(4) R CCACTCAGGACCCGCCCCACGGGCGCCCGC  

mCACCC F GTGTGCAGTGCTCAACTCTAACCTTT AACTTGGCCT    

mCACCC R GTTGAGCACTGCACACACAATGGAGCCCAG  

mGC(2,3) F AGAAGCTTGCGCCCGTGAAGCTTGTCCTGAGTG  
mGC(2,3) R CACGGGCGCAAGCTTCTTCGAAGCTCCGCC  

mGC(1,2,3) R 

PKCδ Fq 

PKCδ Rq 

ChIP F=P+2F 

ChIP R=P+289R 

Methylated F 

Methylated R 

Unmethylated F 

Unmethylated R 

CACGGGCGCAAGCTTCTTCGAAGCTAAGCT 

TCTGGGAGTGACATCCTAGACAACAACGGG   

CAGATGATCTCAGCTGCATAAAACGTAGCC 

ATATATCTCGAGTCCTGGGCTCCATTGTGTGTG 

GTCTATAAGCTTACCTCACCCAGGTGCCGG 

TGTAATTTAAAGAGGTTGAGACGC 

TAACCGTCTCTAACTCTTATAACGC 

TAGTTGGTTAGTGGGGAGTTTTG 

TTAACCATCTCTAACTCTTATAACACC 

 

410 

 

312 

 

228 

 

228 

 

 
 

Sequence of primers for constructions mouse PKCδ promoter reporter plasmids, site-directed 

mutagenesis, real-time RT-PCR, and ChIP experiments. Boldface letters indicate mutated 

bases.  
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  Table S2: Sense sequences of the oligonucleotides used in EMSAs  

Probe/Competitor                               Sense oligonucleotide (5’-3’) 

PkcδGC(1, 2)                                 CACGTGGGCGGAGCTTCGAAGGGGCGGGCGCC  

PkcδGC(1, 2) mutant                        CACGTaaTCttAGCTTCGAAGaaTCTttCGCC 

Sp1 consensus                                    ATTCGATCGGGGCGGGGCGAGC  

Sp1 consensus mutant                        ATTCGATCGaaTCttt GCGAGC 

PkcδGC(1)  

PkcδGC(2) 

GCTCACGTGGGCGGAGCTTC 

CTTCGAAGGGGCGGGCGCCCG  

  

 
Nucleotide sequences of the consensus binding motif are underlined. Mutated base pairs in 

mutant oligos are highlighted in bold and in lowercase.  
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CHAPER III: HISTONE ACETYLATION UPREGULATES PKC δ VIA 

SP-DEPENDENT TRANSCRIPTION IN DOPAMINERGIC NEURONS: 

RELEVANCE TO EPIGENETIC MECHANISMS OF NEURODEGENERATION I N 

PARKINSON’S DISEASE 
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Huajun Jin, Arthi Kanthasamy, Anamitra Ghosh, Vellareddy Anantharam, and Anumantha 

Kanthasamy 

 

Abstract 

 

 Protein Kinase Cδ (PKCδ) is an oxidative stress sensitive kinase that plays a causal 

role in apoptotic cell death in cell culture and animal models of Parkinson’s disease (PD). We 

previously characterized multiple DNA regulatory elements that positively or negatively 

regulate PKCδ gene expression in neurons. We identified members of the Sp protein family 

of transcription factors as fundamentally critical determinants of basal PKCδ gene 

transactivation. However, the association between epigenetic regulation and PKCδ 

expression has not yet been studied thus far. Here, we report that treatment with sodium 

butyrate (NaBu), a specific histone deacetylase (HDAC) inhibitor, significantly enhanced the 

PKCδ protein and mRNA levels in primary striatal and nigral neurons and in NIE115 and 

MN9D cells. Other HDAC inhibitors, valproic acid (VPA), scriptaid, trichostatin A (TSA), 

and apicidin, all mimicked the action of NaBu to induce PKCδ. NaBu-induced PKCδ 



www.manaraa.com

128 

expression correlated with hyperacetylation of H4 histone associated with PKCδ promoter, 

suggesting that acetylation-dependent chromatin remodeling may play a role in PKCδ 

upregulation. To further explore the molecular basis of histone acetylation-dependent PKCδ 

upregulation, PKCδ promoter analysis was performed using reporter gene assays. NaBu and 

other tested HDAC inhibitors all dramatically increased the PKCδ promoter activity in a 

dose-dependent manner. By using deletion analyses, the minimal fragment of the PKCδ 

promoter in response to NaBu was mapped to an 81 bp non-coding exon 1 region (+209 to 

+289). The site-directed mutagenesis studies revealed that multiple GC sites within this 

region are major elements conferring the responsiveness to NaBu-induced promoter activity. 

In addition, transcriptional activity of Sp1 and Sp3 was significantly induced by NaBu. 

Importantly, the ectopic expression of Sp1, Sp3, or Sp4 significantly enhanced 

NaBu-mediated transactivation of PKCδ promoter, whereas the ectopic expression of 

dominant negative mutant of Sp1 or Sp3 didn’t cause this effect. Moreover, the Sp protein 

inhibitors mithramycin-A and tolfenamic acid dose-dependently blocked NaBu-induced 

PKCδ promoter activity. In addition, transcriptional activity of Sp1 and Sp3 was significantly 

induced by NaBu in a one-hybrid system. By utilizing the same assay, we found that the B 

domain and the glutamine-rich segment of the A domain of Sp1 and Sp3 (amino acids Sp1 

146-494; Sp3 81-499) were essential for the NaBu-induced transactivation of the PKCδ 

promoter. Transient overexpression of p300 or CBP potentiated NaBu-induced 

transactivation potential of Sp1 or Sp3, whereas transient overexpression of HDACs 

attenuated this effect, suggesting that p300/CBP and HDACs may act as co-activators or 

co-repressors in response to NaBu exposure. Finally, NaBu treatment in the C57 black mouse 

model caused a time-dependent induction of PKCδ gene expression. Taken together, our 
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studies reveal that histone acetylation regulates the expression of a proapoptotic kinase PKCδ 

in the nigrostriatal dopaminergic system via the Sp-dependent epigenetic mechanism, which 

may play a role in the pathogenesis of PD.  

 

Introduction 

 

 PKC represents a large family of at least 12 serine/theronine kinases that regulate 

various cellular events, including proliferation, cell cycle progression, differentiation, and 

apoptosis (Dempsey et al., 2000). Based on their structure and substrate requirements, 11 

PKC isoforms are categorizeded into three subfamilies, namely conventional PKCs (α, βI, 

βII, and γ), novel PKCs (δ, ε, η, and θ), and atypical PKCs (ζ, ι, and λ). The novel PKC 

member, PKCδ has been recognized as a key pro-apoptotic effector in various cell types 

(Brodie and Blumberg, 2003; Kanthasamy et al., 2003b). The role of PKCδ in nervous 

system function is beginning to emerge, and our recent studies showed that PKCδ is an 

oxidative stress-sensitive kinase, and that persistent activation of PKCδ by 

caspase-3-mediated proteolytic cleavage is a key mediator in multiple models of 

PD-associated dopaminergic neurodegeneration (Anantharam et al., 2002; Kaul et al., 2003; 

Kitazawa et al., 2003; Kaul et al., 2005b; Latchoumycandane et al., 2005). Alternatively, 

pharmacological inhibiton of PKCδ or depletion of PKCδ by siRNA is sufficient to prevent 

neurotoxin-induced dopaminergic neurodegeneration in vivo and in vitro (Yang et al., 2004; 

Kanthasamy et al., 2006; Zhang et al., 2007a), indicating that PKCδ could represent a valid 

pharmacological target for development of a neuroprotective strategy against oxidative 

stress-induced dopaminergic degeneration in PD. Furthermore, PKCδ has been found to act 
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as a key mediator of apoptosis in neurons of PD patients (Clarke, 2007). In addition, 

improper PKCδ activity, caused by aberrant expression of PKCδ, has been implicated in 

disease conditions, such as ischemia/hypoxia (Miettinen et al., 1996), manganism (see Chapter 

V), and cancer (Reno et al., 2008). Therefore, an understanding of the molecular mechanisms 

that control the amount and activity of PKCδ is of physiological and pathophysiological 

interest.     

 Previously, we characterized the PKCδ promoter in detail (see Chapter II). The 

promoter does not contain a TATA box. There are multiple major regulatory elements within 

the mouse PKCδ promoter, such as a strong positive regulatory element located at 

non-coding exon1 (+1 to +288), a core promoter (-147 to +1), a negative regulatory element 

(-660 to -561), and an interesting anti-inhibitory regulatory element (-712 to -660). 

Moreover, several functional TFBS within the mouse PKCδ promoter have been revealed, 

including NFκB, NERF1a, and PU.1 sites residing in the core promoter, as well as five Sp 

binding sites within the non-coding exon 1 region. It remains unknown, however, whether 

epigenetic mechanisms contribute to the regulation of PKCδ gene expression.  

 Acetylation and deacetylation of both histone and non-histone proteins play a pivotal 

role in the epigenetic regulation of gene expression. Histone acetylation catalyzed by histone 

acetyltransferases (HATs) promotes a more relaxed chromatin structure, which allows 

various transcription factors access to the promoter of target genes. In contrast, deacetylation 

by histone deacetylase (HDACs) leads to chromatin condensation and consequent 

transcriptional repression (Yang and Seto, 2007). The HDAC inhibitors are classified into 

four groups: short-chain fatty acids, hydroxamic acids, cyclic tetrapeptides, and benzamides 
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(Dokmanovic et al., 2007). Among them, butyrate is thought to be the most effective HDAC 

inhibitor due to its ability to cross the blood-brain barrier (Saha and Pahan, 2006). Although 

many studies show neuroprotective effects of HDAC inhibitors (Chuang et al., 2009), 

growing evidence also suggests a pro-apoptotic role for it in neurons (Dietz and Casaccia, 

2010; Salminen et al., 1998; Boutillier et al., 2003; Wang et al., 2009).   

 In this study, we demonstrate that HDAC inhibition markedly induces PKCδ gene 

expression in the striatum and substantia nigra of animals, in primary nigral and striatal 

neuronal cultures, and in NIE115 and MN9D cells. Our in vitro experiments reveal that 

butyrate induces hyperacetylation of histone H4 associated with PKCδ promoter in NIE115 

cells. Furthermore, the minimal region of the PKCδ promoter mediating butyrate induction is 

mapped to an 81 bp region, and four functioning GC boxes within this region regulate the 

butyrate-stimulated activity. Moreover, we present evidence to indicate that butyrate 

increases the transactivating capacity of Sp proteins to activate the PKCδ promoter. Taken 

together, upregulation of the pro-apoptotic PKCδ by HDAC inhibitors may represent a novel 

molecular mechanism of their neurodegenerative effects.  

 

Experimental Procedures 

 

Reagents 

 Mithramycin A, NaBu, TSA, mouse β-actin antibody, and tolfenamic acid were 

purchased from Sigma-Aldrich (St. Louis, MO). VPA, scriptaid, and apicidin were obtained 

from ALEXIS Biochemicals (Plymouth Meeting, PA). The Bradford protein assay kit was 

purchased from Bio-Rad Laboratories (Hercules, CA). Lipofectamine 2000 reagent, Alexa 
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680-conjugated anti-mouse secondary antibody, and all cell culture reagents were obtained 

from Invitrogen a. Antibodies against PKCδ, Sp1, Sp3, Sp4, c-myc, and HA-tag were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The pan-acetyl Histone H4 

antibody was obtained from Active Motif (Carlsbad, CA), and the rabbit polyclonal antibody 

for acetyl-lysine, mouse p300, and histone H3 antibodies were obtained from Milipore 

(Billerica, MA). IR-Dye800 conjugated anti-rabbit secondary antibody was obtained from 

Rockland Labs (Gilbertsville, PA).  

 

Plasmids construction 

 The mouse PKCδ promoter reporter constructs used in this study have been 

extensively described (see Chapter II). To construct Sp1-luc consisting of three consensus 

Sp1 binding sites from the SV40 promoter and its mutant plasmid mSp1-luc, complementary 

oligonucleotides (for Sp1-luc: sense, 5’-ATATATCTCGAGCGCGTGGGCGGAACTGGGC 

GGAGTTAGGGGCGGGAAAGCTTATATAT-3’, antisense, 5’-ATATATAAGCTTTCCC 

GCCCCTAACTCCGCCCAGTTCCGCCCACGCGCTCGAGATATAT-3’; for mSp1-luc: 

sense, 5’-ATATATCTCGAGCGCGTGTTTTGAACTGTTTTGAGTTAGGTTTTGGAAAG 

CTTATATAT-3’, antisense, 5’-ATATATAAGCTTTCCAAAACCTAACTCAAAACAGT 

TCAAAACACGCGCTCGAGATATAT-3’) were synthesized, annealed, and cloned into the 

XhoI and HindIII sites of pGL3-Basic.  

 The constructs for mammalian expression pN3-Sp1, pN3-Sp4, and pN3-Sp3 encoding 

both long and short isoforms of Sp3 (Sapetschnig et al., 2004), as well as the “empty” control 

vectors pN3 were generously provided by Dr. G. Suske (Philipps-Universität Marburg, 

Germany). To generate the expression vectors for dominant negative forms Sp1 (amino acid 
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603-785) and Sp3 (amino acid 540-781), pN3-DN-Sp1 and pN3-DN-Sp3, the appropriate 

cDNA fragments were PCR-generated from pN3-Sp1 and pN3-Sp3 with the following 

primer pairs, respectively. For pN3-DN-Sp1, forward, 5’-ATATATCTCGAGACCATG 

GCATGCACCTGCCCCTACT-3’, reverse, 5’-ATATATAAGCTTTCAATGGTGATGGTG 

ATGATGGAAGCCATTGCCACTGAT-3’; for pN3-DN-Sp3, forward, 5’-ATATATCTCG 

AGACCATGGAGAATGCTGACAGTCCTG-3’, reverse, 5’-ATATATAAGCTTTCAATG 

GTGATGGTGATGATGCTCCATTGTCTCATTTCC-3’. The PCR products were then 

subcloned into the pN3 vector. The p300 wild-type expression plasmid pCl-p300 and its 

histone acetyltransferase (HAT) deletion mutant, pCl-p300∆HAT, were kindly provided by 

Dr. Joan Boyes (Institute of Cancer Research, London, United Kingdom) and generated as 

described previously (Boyes et al., 1998), and the empty vector pCIneo was a gift from Dr. 

Christian Seiser (University of Vienna, Austria). The expression plasmid pcDNA3-CBP was 

a gift from Dr. Xiang-Jiao Yang (Yang et al., 1996). The expression vectors for HDAC1 

(pcDNA3-Myc-His-HDAC1), HDAC4 (pcDNA3-Myc-His-HDAC4), and the empty vector 

pcDNA3-Myc-His were generously provided by Dr. Tony Kouzarides (Miska et al., 1999). 

Dr. Saadi Khochbin kindly provided the expression vectors for HDAC5 

(pcDNA3-HA-HDAC5) and HDAC7 (pcDNA3-HA-HDAC7) (Lemercier et al., 2002). The 

Gal4 fusion constructs pM-Sp1 and pM-Sp3, as well as the Gal4-dependent reporter 

construct pG5-luc containing five Gal4 DNA binding sites, were gifts from Dr. 

Toshiyuki Sakai (Sowa et al., 1999), and the empty vector pM was kindly provided by Dr. 

Bruce Paterson (National Cancer Institute). To construct the Gal4 DNA-binding domain 

fused Sp1 or Sp3 truncated mutants, Gal4-Sp1N (83-785), Gal4-Sp1AB (83-494), 

Gal4-Sp1ABS/T (83-351), Gal4-Sp1A (83-251), Gal4-Sp1AS/T (83-145), Gal4-Sp1AQ 
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(146-251), Gal4-Sp1B (252-494), Gal4-Sp1BQ (352-494), Gal4-DN-Sp1 (603-785), 

Gal4-Sp3N (1-612), Gal4-Sp3AB (1-499), Gal4-Sp3ABS/T (1-371), Gal4-Sp3A (1-251), 

Gal4-Sp3AQ (81-251), Gal4-Sp3 (1-80), Gal4-Sp3B (252-499), Gal4-Sp3BQ (372-499), and 

Gal4-DN-Sp3 (540-781), the appropriate cDNA fragments were PCR-generated from 

pN3-Sp1 and pN3-Sp3 and cloned into the pM vector. All construction sequences were 

confirmed by DNA sequencing. 

 

Animal experiments 

 Six- to eight-week-old C57B1/6 male mice were housed in a temperature-controlled 

and 12:12 h light/dark room, and were allowed free access to food and water. NaBu was 

dissolved in sterile saline and administered to C57B1/6 mice by IP injection at a dose of 1.2 

g/kg for 6-24 h. An equal volume of saline was given to control animals. Mice were then 

sacrificed and the brain areas of interest were immediately and carefully dissected out and 

stored at -80°C. Animal care procedures strictly followed the NIH Guide for the Care and 

Use of Laboratory Animals and were approved by the Iowa State University IACUC. 

 

Mouse striatal and nigral neurons in primary culture and treatment 

 Plates (6-well for striatal neurons and 12-well for nigral neurons) were coated 

overnight with 0.1 mg/ml poly-D-lysine. Striatal or substantia nigral tissue was dissected 

from gestational 16- to 18-day-old mice embryos and kept in ice-cold Ca2+-free Hank’s 

balanced salt solution. Cells were then dissociated in Hank’s balanced salt solution 

containing trypsin-0.25% EDTA for 30 min at 37 °C. After enzyme inhibition with 10% 

heat-inactivated fetal bovine serum in Dulbecco’s modified Eagle’s medium, the cells were 
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suspended in Neurobasal medium supplemented with 2% Neurobasal supplement (B27), 500 

µM L-glutamine, 100 IU/ml penicillin, and 100 µg/ml streptomycin, plated at 2 × 106 cells in 

2 ml/well and incubated in a humidified CO2 incubator (5% CO2 and 37 °C). Half of the 

culture medium was replaced every 2 days, and experiments were conducted using 6 and 7 

days-old cultures. After exposure to various doses of HDAC inhibitors (NaBu, VPA, 

Scriptaid, TSA, or apicidin) for 24-48 h, the primary cultures were collected for Western blot 

or real-time RT-PCR analysis. 

 

Cell lines, Transient transfections, and Reporter gene assays 

 Mouse neuroblastoma NIE115 and mouse dopaminergic MN9D cells were cultured in 

Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (FBS), 2 

mM L-glutamine, 50 units penicillin, and 50 units streptomycin (37 °C/5% CO2).  

 Transient transfections of NIE115 and MN9D cells were performed using 

Lipofectamine 2000 reagent according to the manufacturers’ instructions. Cells were plated 

at 0.3 × 106 cells/well in six-well plates one day before transfection. Each transfection was 

performed with 4 µg of reporter constructs. Cells were harvested at 24 h post-transfection, 

lysed in 200 µl of Reporter Lysis Buffer (Promega), and assayed for luciferase activity. For 

cotransfection assays, various amounts of expression plasmid as indicated in figure were 

added to the reporter plasmids. The total amount of DNA was adjusted by adding empty 

vector. In HDAC inhibitors treatment experiments, indicated doses of HDAC inhibitors were 

added 24 h after DNA transfection, and cells were collected at designated time points and 

assayed for luciferase activity.  
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 Luciferase activity was measured on a Synergy 2 Multi-Mode Microplate Reader 

(BioTek, Winooski, VT) using the Luciferase Assay system (Promega). The ratio of 

luciferase activity to total amount of proteins was used as a measure of normalized luciferase 

activity. 

 

Quantitative real-time RT-PCR 

 Total RNA was isolated from fresh cell pellets using the Absolutely RNA Miniprep 

kit (Stratagene, La Jolla, CA). First strand cDNA was synthesized using an AffinityScript 

QPCR cDNA Synthesis kit (Stratagene). Real-time PCR was performed in an Mx3000P 

QPCR system (Stratagene) using the Brilliant SYBR Green QPCR Master Mix kit 

(Stratagene), with cDNAs corresponding to 150 ng of total RNA, 12.5 µl of 2 × master mix, 

0.375 µl of reference dye, and 0.2 µM of each primer in a 25-µl final reaction volume. All 

reactions were performed in triplicate. The sequences for PKCδ primers are: forward, 

5’-TCTGGGAGTGACATCCTAGACAACAACGGG-3’, and reverse, 5’-CAGATGATCTC 

AGCTGCATAAAACGTAGCC-3’. β-actin was used as internal standard with the primer set 

purchased from Qiagen (QuantiTect Primers, catalog number QT01136772). The PCR 

cycling conditions contained an initial denaturation at 95 °C for 10 min, followed by 40 

cycles of denaturation at 95 °C for 30 sec, annealing at 60 °C for 30 sec, and extension at 

72°C for 30 sec. Fluorescence was detected during the annealing step of each cycle. 

Dissociation curves were run to verify the singularity of the PCR product. The data were 

analyzed using the comparative threshold cycle (Ct) method (Livak and Schmittgen, 2001).  
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Acid extraction of histone 

 Acid extraction of histones was performed as described previously (Zhu et al., 2001), 

with modifications. Briefly, fresh cell pellets were suspended with five volumes of lysis 

buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 × halt protease inhibitor 

cocktails) and hydrochloride acid at a final concentration of 0.2 M and subsequently lysed on 

ice for 30 min. After centrifugation at 11,000 × g for 10 min at 4 °C, the histone mixtures 

were collected from the supernatant. 

 

Immunoblotting 

 Cell lysates and brain homogenates were prepared as previously described (Zhang et 

al., 2007c). Immunoblotting was performed as previously described (Kanthasamy et al., 

2006). Briefly, the samples containing equal amounts of protein were fractionated through a 

7.5% SDS-PAGE and transferred onto a nitrocellulose membrane (Bio-Rad Laboratories, 

Hercules, CA). Membranes were blotted with the appropriate primary antibody and 

developed with either IRDye 800 anti-rabbit or Alexa Fluor 680 anti-mouse secondary 

antibodies. The immunoblot imaging was performed with an Odyssey Infrared Imaging 

system (Li-cor, Lincoln, NE). 

 

Chromatin immunoprecipitation (ChIP)  

 ChIP assays were conducted with chromatin isolated from NIE115 cells using the 

ChIP-IT Express Enzymatic kit from Active Motif according to the manufacturer’s 

instructions with slight modifications. Briefly, after cross-linking, the nuclei were prepared 

and subjected to enzymatic digestion to generate chromatin fragments between 200 to 1500 
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bp. The sheared chromatin was collected by centrifugation, and a 10-µl aliquot was removed 

to serve as a positive input sample. Aliquots of 70-µl sheared chromatin were 

immunoprecipitated with 3 µg pan-acetyl Histone H4 antibody (Active Motif) and protein-G 

magnetic beads. Equal aliquots of each chromatin sample were saved for no-antibody 

controls. The immunoprecipitated DNA was analyzed by PCR to amplify a region (+2 to 

+289) within the PKCδ promoter. Primers for amplification are: forward, 

5’-ATATATCTCGAGTCCTGGGCTCCATTGTGTGTG-3’, and reverse, 5’-GTCTATAAG 

CTTACCTCACCCAGGTGCCGG-3’. Conditions of linear amplification were determined 

empirically for these primers. PCR conditions are as follows: 94°C 3 min; 94°C 30 sec, 59°C 

30 sec, and 68°C 30 sec for 35 cycles. PCR products were resolved by electrophoresis in a 

1.2% agarose gel and visualized after ethidium bromide staining. 

 

DNA affinity precipitation assay (DAPA) 

 Nuclear and cytoplasmic proteins were prepared using the NE-PER nuclear and 

cytoplasmic extraction kit (Thermo Scientific, Waltham, MA). 5’-biotinylated 

oligonucleotides corresponding to the sequence between +204 and +238 of the PKCδ 

promoter were synthesized by Integrated DNA Technologies (Coralville, IA) and annealed. 

Twenty pmol of oligos was incubated with 100 µg of Dynabeads M-280 (Dynal Biotech, 

Oslo, Norway) in B&W buffer at room temperature for 10 min. Un-conjugated DNA was 

washed off with a magnetic particle concentrator (Dynal Biotech). After block by 0.5% BSA 

in TGED buffer (20 mM HEPES, pH 7.9, 1 mM EDTA, 10% glycerol, 0.01% TritonX-100) 

at 4 °C for 2 h, the DNA-conjugated beads were incubated with 350 µg of nuclear extracts 

from NIE115 cells treated with or without 1 mM NaBu for 4 h at 4 °C. After extensive wash 
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with TGED buffer, the beads were eluted with 50 µl of 2x SDS loading buffer. Complexing 

proteins were resolved on a 7.5% SDS-PAGE gel and examined by immunoblotting with 

polyclonal anti-Sp3 and -Sp4 antibodies. 

 

Statistical analysis 

 Unless otherwise stated, all data were determined from three independent 

experiments, each done in triplicate, and expressed as average values ± SEM. All statistical 

analyses were performed using the GraphPad Prism 4.0 software (GraphPad Software, San 

Diego, CA). One-way analysis of variance (ANOVA test) followed by the Tukey multiple 

comparison tests was used for statistical comparisons, and differences were considered 

significant if P-values less than 0.05 were obtained.  

 

Results 

 

PKCδ mRNA and protein levels are increased by exposure to HDAC inhibitors in vivo 

and in vitro 

 In the first set of experiments we assessed the effect of HDAC inhibition on the 

production of PKCδ protein in a variety of primary and cultured cells. As shown in Fig. 1A, 

treatment with 1 mM NaBu significantly increased the levels of total PKCδ protein in 

primary mouse nigral (left panel) and striatal (right panel) neurons following 24-48 h drug 

exposure. Induction of PKCδ levels by NaBu was accompanied by a time-dependent increase 

in cleaved products of PKCδ. Because butyrate has several effects that may not be due to 

inhibition of HDAC (Marks et al., 2003), we further examined whether other HDAC 
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inhibitors had similar effects on PKCδ protein expression. For this, we exposed striatal 

neurons to increasing concentrations of multiple HDAC inhibitors for 48 h, and PKCδ 

protein levels were determined by Western blot analysis. As observed with NaBu, a 

dose-dependent induction of both native and cleaved PKCδ protein was observed in cells 

treated with VPA, another short-chain fatty acid (Fig. 1B). Scriptaid, which is structurally 

unrelated to NaBu, also increased total PKCδ levels in the dose range tested (Fig. 1C), 

whereas induction of PKCδ proteolytic cleavage was only observed at a lower dose (1.23 

µM). In addition, PKCδ levels were also significantly up-regulated after treatment of striatal 

neurons with a lower dose (100 nM) of TSA or apicidin, two other structurally unrelated 

HDAC inhibitors; however, detectable proteolytic activation of PKCδ was not observed 

following any of the doses (Fig. 1D-E). Analysis of mouse neuroblastoma NIE115 cells 

demonstrated that PKCδ protein levels were also elevated up to ~2-fold at 48 h NaBu (1 

mM) treatment compared with the untreated cells (Fig. 1F).    

 We then asked whether the effect of HDAC inhibitors on PKCδ protein expression 

was exerted at the transcriptional level. Dose-response and time-course studies were 

performed and PKCδ mRNA levels were analyzed using a real-time RT-PCR approach. As 

shown in Fig. 2A, exposure of primary nigral (left panel) and striatal (right panel) cultures to 

1 mM of NaBu for 24 or 48 h potently increased PKCδ mRNA expression. The magnitude of 

the inductions varied from 4- to 6-fold relative to untreated cells. Furthermore, when nigral 

and striatal cells were administered increasing concentrations of NaBu (0.2-5 mM) for 24 h, a 

dose-dependent induction of PKCδ mRNA, with a maximal effect at 1 mM, was found (Fig. 

2B). In addition, similar induction of endogenous PKCδ mRNA by NaBu treatment was also 
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observed in both NIE115 and mouse dopaminergic MN9D cells (Fig. 2C). The maximal 

increase of approximately 3-fold was induced by a 48 h sodium butyrate treatment.  

 To further address whether the effect of HDAC inhibition on PKCδ expression 

observed above reflects the regulation of PKCδ expression in vivo, C57B1/6 mice were 

administered 1.2 g/kg body weight of NaBu via intraperitoneal injection, and the levels of 

PKCδ in brain at various time points (6-24 h) after injection were determined by Western 

blot analysis. As shown in Fig. 3A, in the mouse substantia nigra there was a time-dependent 

upregulation of PKCδ protein, with a maximal 3-fold increase achieved at 24 h after drug 

injection, whereas TH and actin levels remained unchanged under these conditions. 

Furthermore, the striatal regions exhibited a similar trend for increased PKCδ protein 

following NaBu exposure (Fig. 3B). Overall, these data clearly demonstrate a close 

correlation between HDAC inhibition and PKCδ gene expression in vivo and in vitro, and 

suggest that NIE115 and MN9D mouse neuronal cells are relevant model systems to analyze 

the regulation of PKCδ expression by HDAC inhibition.  

 

Butyrate induces hyperacetylation of histone H4 associated with the PKCδ promoter 

 Because butyrate inhibits the activity of most HDAC isoforms, we next examined 

whether the induction of PKCδ expression by NaBu was correlated with a specific change in 

the histone acetylation of the PKCδ gene promoter. First, the effects of HDAC inhibition by 

NaBu on global levels of histone acetylation were analyzed. As shown in Fig. 4A, the global 

levels of histone H3 and H4 acetylation in NIE115 cells were significantly increased after 

treatment with NaBu, whereas total histone H3 levels were not changed. Next, to further 

examine whether the change in PKCδ expression occurs directly through chromatin 
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remodeling, we performed a ChIP assay using chromatin isolated from NIE115 cells and the 

antibody specific for hyperacetylated histone H4. The results show that exposure of NIE115 

cells to 1 mM NaBu resulted in a dramatic enrichment of histone H4 acetylation at the PKCδ 

promoter. Taken together, these data indicate that chromatin remodeling is at least partly 

responsible for the transcriptional activation of the PKCδ gene after NaBu treatment.  

 

HDAC inhibition activates PKCδ promoter transcription: delineation of the sodium 

butyrate responsive elements on PKCδ promoter 

 To further examine whether the induction of PKCδ transcription by HDAC inhibition 

was mediated directly by activating the PKCδ promoter, the effects of HDAC inhibitors on 

PKCδ promoter activity were determined in a luciferase reporter construct-based transient 

transfection assay. Our previously cloned mouse PKCδ promoter/luciferase reporter 

construct pGL3-1694/+289, which contains 1694 bp of the 5’ flanking sequences and 289 bp 

of non-coding exon 1 (access number GU182370), or pGL3-Basic empty vector was 

transfected into NIE115 and MN9D cells. Transfected cells were incubated with increasing 

concentrations of NaBu (0.2 to 1 mM) for 24 h. As shown in Fig. 5A, the addition of NaBu 

significantly increased the luciferase activity of pGL3-1694/+289 in a dose-dependent 

manner up to an average ~5-fold in MN9D (left panel) and NIE115 (right panel) cells, 

whereas pGL3-Basic control was unchanged, indicating the stimulatory effect of NaBu on 

the PKCδ promoter is specific. Furthermore, VPA, TSA, scriptaid, or apicidin treatments for 

24 h in MN9D cells caused a more robust activation of PKCδ promoter activity than NaBu 

(Fig. S1). Maximum activation for those HDAC inhibitors ranged from 8- to 14- fold 

compared to the untreated cells (Fig. S1). 
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 The regulation of PKCδ promoter activity by HDAC inhibition was further confirmed 

by cotransfection with the pGL3-1694/+289 promoter construct and expression vectors for 

multiple HDAC isoforms (HDAC 1, 4, 5, and 7) under either basal or butyrate-stimulated 

conditions. As shown in Fig. 5B, compared to empty vector (EV) transfected cells, ectopic 

expression of all four HDAC proteins led to a significant inhibition of basal PKCδ promoter 

activity in both NIE115 and MN9D cells, with HDAC4 and HDAC5 being the most potent 

repressors (~60% and 80% repression for HDAC4 and HDAC5, respectively). Furthermore, 

butyrate-induced activation of PKCδ promoter activity was also significantly inhibited by 

expressing various amounts HDAC1, HDAC4, or HDAC5 in MN9D cells (Fig. 5C, left 

panel), while butyrate stimulation of the PKCδ promoter after ectopic expression of HDAC7 

was minimal. Similar inhibition of butyrate induction of PKCδ promoter activity by 

overexpressing HDACs was also found in NIE115 cells (Fig. 5C, right panel). Efficient 

overexpression of these HDACs was verified by Western blot analysis (data not shown). 

Taken together, these results indicate that NaBu up-regulates PKCδ gene transcription 

through PKCδ promoter interactions, and suggest that multiple HDACs are involved in 

regulation of basal PKCδ promoter transcription and in mediating the NaBu response.  

 To elucidate the mechanism underlying the activation of the PKCδ promoter by 

NaBu, we first delineated the regions of the PKCδ promoter that respond to butyrate. A 

series of truncated promoter constructs in -1694/+289 region were analyzed by transient 

transfection for their response to NaBu treatment in MN9D and NIE115 cells. As shown in 

Fig. 6A-B, in MN9D cells, luciferase activities from the promoter reporter construct 

pGL3-147/+289 as well as the pGL3+2/+289 plasmid were strongly stimulated up to 3.9- and 
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4.2-fold by NaBu, levels comparable to that obtained from the full-size promoter 

(pGL3-1694/+289). On the other hand, absence of the +2 to +289 sequences led to a 

significant loss of butyrate responsiveness. Furthermore, similar results were found in 

NIE115 cells (Fig. 6C). Thus, this preliminary mapping suggests that the major 

NaBu-responsive elements are located within the +2/+289 region. We therefore focused our 

follow-up efforts on this region. 

 

Sodium butyrate stimulates PKCδ promoter activity through four GC-box elements 

 In a previous study, we extensively characterized the mouse PKCδ promoter, and we 

found that the region between +2 and +289 is GC rich, and contains multiple Sp binding 

sites, including four consecutive GC boxes designated GC(1) to GC(4) within ~250 bp 

downstream of the TSS, as well as a CACCC box located at position +35 bp downstream of 

the TSS (Fig. 7A). Our results also revealed that those Sp sites act as crucial cis-elements 

regulating the basal PKCδ transcription in neuronal cells. To determine whether these Sp 

sites are involved in the butyrate-induced activation of the PKCδ promoter, we performed 

site-directed mutagenesis of these sites in the context of pGL3-147/+209 and 

pGL3+165/+289 constructs. The former possesses the proximal CACCC site, whereas in the 

latter, only the four GC boxes are present (Fig.7A). Those mutated and wild-type reporter 

plasmids were used and assayed for luciferase activity following NaBu treatment. As shown 

in Fig. 7B, exposure to NaBu did not activate luciferase activity of the wild-type 

pGL3-147/+209, and even reduced its activity in MN9D cells, suggesting that the CACCC 

site is not involved in the activation by butyrate. Indeed, mutation of the CACCC site 

(mCACCC) did not diminish the NaBu responsiveness; rather it slightly increased the 
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responsiveness to NaBu compared to that of wild-type. On the other hand, NaBu 

significantly activated the luciferase activity of wild-type pGL3+165/+289 up to 3.4- and 

4.7-fold in MN9D and NIE115 cells, respectively (Fig. 7C-D). These findings also indicate a 

minimal 81 bp NaBu-responsive promoter region from +209 to +289. Alteration of the most 

distal GC(4) or GC(3) site reduced the NaBu responsiveness by 15% and 24%, respectively, 

compared with that of wild-type pGL3+165/+289 in MN9D cells (Fig. 7C). In contrast, 

mutation of either the proximal GC(2) box or GC(1) box caused major decrements in 

response to NaBu, resulting in about 35% and 33% elimination compared to that of 

wild-type. Furthermore, triple mutants, mGC123, mGC124, mGC134, or mGC134, in which 

only site GC(4), GC(3), GC(2), or GC(1) is still active, respectively, all resulted in a 

complete loss of NaBu-induced promoter activity in both cells (Fig. 7D), suggesting that 

cooperative interactions among the different GC sites are required to mediate the 

transactivation effect on the PKCδ promoter by NaBu. Taken together, these data suggest 

that GC(1) and GC(2) sites, and less significantly, GC(3) and GC(4) sites, rather than 

CACCC site, are the main NaBu-responsive elements, and that, in addition, these GC boxes 

cooperate in an additive manner in mediating the NaBu response.  

 To confirm further that Sp sites indeed mediate the transcriptional activation by 

NaBu, we generated a Sp1 reporter construct (Sp1-luc), composed of SV40 promoter-derived 

three consensus Sp1 binding elements inserted into the promoter-less luciferase reporter 

vector (pGL3-Basic). The effects of NaBu on its transcriptional activity were examined in 

transient transfection studies performed in MN9D and NIE115 cells. As shown in Fig. 7D, 

the luciferase activities of Sp1-luc were significantly elevated following NaBu exposure (up 

to ~4.0- and 5.0-fold activation in MN9D and NIE115 cells, respectively), whereas mutations 
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of all Sp1 consensus binding sites (mSp1-luc) completely abolished the NaBu-induced 

transcriptional activation. Furthermore, ectopic expression of HDAC isoforms led to 

dramatic inhibition of both basal and NaBu-induced promoter activity of Sp1-luc (Fig. S2).  

  

Sp family proteins are required for mediating sodium butyrate induction of PKCδδδδ 

expression 

 We demonstrated previously that Sp families of transcription factors (Sp1, Sp3, and 

Sp4) can transactivate PKCδ transcription through specific interaction with the multiple 

GC-box elements present in the non-coding exon 1 region of PKCδ promoter, with Sp3 being 

the most robust activator. These findings led to a hypothesis that the NaBu-induced 

transcriptional activation of PKCδ might be mediated by Sp transcriptional factors. To test 

this possibility, we analyzed the functional impact of ectopic expression of Sp proteins on the 

NaBu-induced transcriptional activation in transient transfections. The PKCδ promoter 

reporter construct pGL3-147/+289, as illustrated in Fig. 6-7, was cotransfected into NIE115 

cells along with 4 µg of expression vectors for Sp family proteins (pN3-Sp1, pN3-Sp3, and 

pN3-Sp4) or a control empty vector (pN3) in the presence or absence of 1 mM NaBu for 24 

h. All of these Sp expression vectors have been shown to express stable proteins in both 

NIE115 and MN9D cells (see Chapter II). In accordance with butyrate induction of PKCδ 

promoter activity, as shown in Fig. 5-6, exposure of the empty vector-transfected cells to 

NaBu displayed ~4.5-fold activation of the pGL3-147/+289 reporter, whereas in the absence 

of NaBu, overexpression of Sp3 alone led to ~2.5-fold activation (Fig. 8A). Importantly, a 

high level of synergistic transactivation of the promoter activity up to ~11.5-fold was seen 
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when cells overexpressing Sp3 protein were treated with NaBu. A similar synergistic 

transactivation effect was also found in Sp1- and Sp4-transfected cells after 24 h of 

incubation with NaBu (Fig. 8A). These findings clearly indicate that activation of PKCδ 

promoter by NaBu is mediated by the Sp family of transcription factors. In addition, parallel 

transfection studies with NIE115 cells with two different amounts of expression vector for 

wild-type or dominant-negative mutant Sp1/Sp3 were performed to confirm the effects of Sp 

proteins on NaBu transactivation (Fig. 8B). In these experiments, ectopic expression of 

wild-type Sp1 or Sp3 caused a dose-dependent increase in the NaBu-induced enhancement of 

the PKCδ promoter activity. In contrast, expression of a dominant-negative construct 

pN3-DN-Sp1 or pN3-DN-Sp3, which both have an intact DNA binding domain but lack the 

complete transactivation domains of Sp1/3, had no effect on the NaBu-mediated induction of 

PKCδ promoter activity. Interestingly, even the highest dose of these mutant constructs did 

not affect the basal PKCδ promoter activity.  

 To corroborate the observed effect of ectopic expression of Sp family proteins on 

NaBu transactivation of the PKCδ promoter, different types of known Sp specific inhibitors 

were employed to test whether they can block the induction of PKCδ promoter activity by 

NaBu. As shown in Fig. 8C, NaBu-induced transactivation of the PKCδ promoter was 

significantly compromised by pretreatment with mithramycin A, an aureolic antibiotic that is 

known to bind to the GC-rich motif and selectively inhibit Sp transcription factor binding 

(Ray et al., 1989; Blume et al., 1991), in a dose-dependent manner. Furthermore, tolfenamic 

acid, which has been shown to induce Sp protein degradation (Konduri et al., 2009), also 

inhibited the NaBu transactivation in a dose-dependent manner (Fig. S3).  
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Sodium butyrate enhances the transactivational activity of Sp proteins 

 To further investigate the mechanisms underlying the stimulation of PKCδ promoter 

activity by NaBu, we first determined whether NaBu affects the protein levels of Sp 

effectors. Previously, we showed that Sp3 and Sp4 are endogenously expressed at 

appreciable levels in both MN9D and NIE115 cells, but the expression of endogenous Sp1 

was not detected in these cells; therefore, in the present study, the effect of NaBu on the 

expression of Sp3 was examined. As shown in Fig. 9A, the protein levels of Sp3 were not 

changed following NaBu treatment. We next examined the possibility that NaBu might 

stimulate PKCδ transcription by elevating the binding of Sp proteins to the PKCδ promoter. 

DNA affinity protein binding assays (DAPA), using a biotin-labeled oligonucleotide 

spanning the GC (1) and GC (2) elements between positions +204 and +238 on the PKCδ 

promoter and nuclear extracts from NIE115 cells, were performed. The association of Sp3 

with this oligonucleotide was unaltered after incubation with NaBu (Fig. 9B). These findings 

indicate that stimulation by NaBu resulted from a mechanism other than alteration of Sp 

protein levels or DNA binding. We then evaluated whether NaBu could directly increase the 

transactivating potential of Sp proteins. To test this possibility, we utilized a one-hybrid 

system, in which Sp1 or Sp3 is fused to the DNA-binding domain of the yeast transcription 

factor Gal4, and the effects of NaBu on the activity of these chimeric proteins were assayed 

in MN9D and NIE115 cells using a reporter plasmid pG5-luc containing five Gal4 DNA 

binding sites. As shown in Fig. 9C, NaBu had a negligible effect on either the pG5-luc 

reporter alone or pG5-luc cotransfected with the empty control vector Gal4. In contrast, a 

huge stimulation of transactivation of Gal4-Sp1 or Gal4-Sp3 upon NaBu treatment was 

observed (12- and 18-fold in MN9D cells; 32- and 31-fold in NIE115 cells for Gal4-Sp3 and 
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Gal4-Sp1, respectively). However, the transactivation by NaBu was almost abolished when 

the chimeric proteins Gal4-Sp1DBD or Gal4-Sp3DBD lacking the Sp transactivation 

domains was used, suggesting the specificity of NaBu on Sp1/3 transactivational ability. It 

should be noted that under the basal condition, however, Gal4-Sp1 is a stronger activator 

than Gal4-Sp3. In addition, overexpression of HDAC4 or HDAC5 resulted in a significant 

reduction in butyrate-induced transactivation of Gal4-Sp1 or Gal4-Sp3, whereas minimal 

effects on the butyrate induction of Sp1/3 transactivational activity were found when HDAC1 

or HDAC7 was overexpressed (Fig. 9D). Overall, these data indicate that NaBu specifically 

increases the transactivational capacity of Sp1/3 proteins, and that HDAC4 and HDAC5 

might be involved in the regulation of Sp transcriptional activity by NaBu. 

 

Characterization of domains of Sp1 and Sp3 for the mediation of responsiveness to 

sodium butyrate 

 Sp transcription factors (Sp1, Sp3 and Sp4) contain several conserved regions, which 

constitute two transactivation domains (A and B boxes) close to the C-terminus with regions 

rich in serine/threonine and glutamine residues, an extreme N-terminal transactivation 

domain (D box), an N-terminal DNA binding domain (zinc finger), and a domain of highly 

charged amino acids (C box) located directly N-terminal to the zinc finger. Additionally, Sp1 

and Sp3 each possess an inhibitory domain (ID) located in the extreme N-terminus of Sp1 

and near the C-terminus of Sp3, respectively. To identify the regions of Sp1/3 required for 

NaBu responsiveness, a series of truncated Gal4-Sp1 or Gal4-Sp3 expression constructs were 

generated and are depicted schematically in Fig. 10A and C. Similar to the above 

experiments, the ability of these chimeric proteins to transactivate pG5-luc activity in both 
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the presence and absence of NaBu was assayed in NIE115 cells. As shown in Fig. 10, the 

chimeras that retained the entire N-terminal part (A+B+C boxes) or A+B boxes of Sp1 or 

Sp3 displayed comparative capacities to activate transcription in response to NaBu in 

comparison with Gal4-Sp1 or Gal4-Sp3 full-length fusions. Interestingly, the Gal4-Sp3A+B 

chimera lacking the inhibitory domain located adjacent to zinc fingers even confers a higher 

NaBu responsiveness to the G5-luc reporter construct than that obtained following 

overexpression of Gal4-Sp3 full-length protein, suggesting that the inhibitory domain of Sp3 

may have a negative regulatory action in mediating NaBu induction of the PKCδ promoter 

activity. Further analysis of the N-terminal region revealed that sequences within three 

subdomains, AQ, BS/T, and BQ, which corresponds to amino acids Sp1 (146-494) and Sp3 

(81-499), are essential to the transactivation by NaBu, as removal of any one of the three 

subdomains showed a significant decrease in their capacity to mediate the butyrate-induced 

transactivation. However, any of these subdomains alone were unable to render the G5-luc 

reporter construct NaBu responsiveness. Interestingly, the AS/T subdomain of Sp1 (83-145) 

appeared to have no effect on the ability of NaBu to enhance the transcription activity.  

 

Ectopic expression of p300/CBP stimulates sodium butyrate-mediated transactivation 

of Sp1 and Sp3 

 Our previous studies revealed that both p300 and CBP function as coactivators for Sp 

transcription factors in transactivation of the PKCδ promoter via the Sp binding sites under 

basal conditions (see Chapter II). To investigate whether p300 or CBP are involved in the 

NaBu induction of PKCδ promoter activity, we performed co-transfection assays with 

expression vectors for p300 or CBP. As shown in Fig. 11A-B, the coexpression of CBP or 
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p300 significantly enhanced the NaBu-induced transactivation of Gal4-Sp1 and Gal4-Sp3 in 

a dose-dependent manner. Interestingly, we found that expression of a p300 mutant lacking 

HAT activity did not affect the NaBu-stimulated transcriptional activity of Gal4-Sp1 and 

Gal4-Sp3. These findings indicate a functional role for p300/CBP in the Sp-dependent 

transcription by NaBu. 

 

Discussion  

 

 In this study we present evidence for a new model of mouse PKCδ transcriptional 

regulation by an epigenetic control mechanism involving HDAC inhibition in vitro and in 

vivo. We were particularly interested in these findings because PKCδ is a protein kinase 

critically involved in apoptotic signaling in various cell types. Indeed, considerable evidence 

supports the notion that activation of PKCδ via caspase-dependent proteolysis plays an 

essential role in oxidative stress-induced dopaminergic cell death in PD (Anantharam et al., 

2002; Kaul et al., 2003). Lines of evidence have also demonstrated that the PKCδ specific 

inhibitor exhibits a neuroprotective effect in the MPTP mouse model (Zhang et al., 2007a). 

Given the prominent role of PKCδ in regulating multiple biological events, its expression 

must therefore be tightly regulated. Although a number of studies have documented the 

changes in PKCδ levels in response to multiple stimuli, the regulation of PKCδ gene 

expression at the transcriptional level is poorly understood. The PKCδ promoter lacks a 

TATA or TATA-like box and contains GC-rich sequences in the proximal promoter region 

(Kurkinen et al., 2000; Suh et al., 2003). Furthermore, we have extensively characterized the 

PKCδ promoter (see Chapter II), and we showed that a proximal 400 bp genomic fragment 
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(-147/+289) surrounding the transcription start site functions as a basal PKCδ promoter to 

sustain the basal expression of PKCδ in neurons. Further, we identified multiple functional 

TF binding sites contributing to basal PKCδ expression, including one for NFκB, and five for 

Sp family transcription factors. Here we designed experiments to determine whether HDAC 

inhibition has a regulatory role in PKCδ expression in neurons.  

 We initiated our study by evaluating the possible alterations in PKCδ levels after 

NaBu exposure in cells maintained in vitro and in primary striatal or nigral neurons. The 

results showed that PKCδ protein levels are dramatically increased in NaBu-exposed cells. 

Importantly, this induction of PKCδ also occurs in a mouse model following acute NaBu 

treatment. These novel findings expand the previous observations demonstrating that PKCδ 

is required for HDAC inhibitors-mediated gene activation (Kim et al., 2003; Kim et al., 

2007). We also demonstrated that the up-regulation of PKCδ protein levels by NaBu 

correlates with an increase in PKCδ mRNA levels. Other structurally unrelated HDAC 

inhibitors, including apicidin, scriptaid, and TSA, also robustly induce PKCδ mRNA, 

suggesting that the ability of NaBu to induce PKCδ expression appears not to be due to the 

structural property of NaBu.  

 We next investigated the molecular mechanism underlying the NaBu-mediated PKCδ 

gene activation. Analysis of global histone acetylation levels suggests that NaBu significantly 

increased the cellular histone acetylation levels. Importantly, an increase in PKCδ promoter 

histone acetylation was observed after NaBu treatment. Thus, these results suggest that 

HDAC inhibitors mediate chromatin remolding by enhancing histone acetylation, which 

plays a role in the NaBu induction of PKCδ. To clarify whether the upregulation of PKCδ 

mRNA is accompanied by activation of the PKCδ promoter, we analyzed the PKCδ promoter 
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activity using a promoter region (-1494/+289) that we recently cloned (see Chapter II). Our 

results indicate that NaBu and other HDAC inhibitors significantly increase the luciferase 

activity of this reporter. Additional luciferase reporter assays using serial deletion PKCδ 

reporter constructs revealed that the major NaBu response elements reside in the 289 bp 

non-coding exon 1 region. The proximal region of the PKCδ promoter that confers the NaBu 

responsiveness is GC rich and contains multiple Sp binding sites, including one proximal 

CACCC box and four distal consecutive GC boxes. Previously, we showed that the CACCC 

box and the GC boxes act differentially in mediating the promoter activation by ectopic 

expression of Sp transcription factors (see Chapter II). Here, we performed experiments to 

determine the possible involvement of these Sp sites in the NaBu induction. Unexpectedly, a 

smaller construct, namely pGL3-147/+209, which possesses the upstream CACCC box but 

lacks the downstream GC boxes, was not activated by NaBu treatment; moreover, NaBu 

even caused a strong reduction in promoter activity in this promoter context (-147 to +209) in 

MN9D cells, suggesting that the CACCC box is not required for NaBu induction. Indeed, 

mutation of the CACCC box had no effect on NaBu-mediated activation of PKCδ promoter. 

On the other hand, using another small construct, pGL3+165/+289, we found that all GC 

boxes are required for full response to NaBu. Moreover, cooperative actions of different GC 

boxes are also required for mediating the NaBu response, since triple mutation of any three 

GC boxes completely diminished the NaBu responsiveness. Analysis using a luciferase 

reporter (Sp1-luc) containing three Sp1 consensus sequences further implicates the cluster of 

four GC boxes in NaBu-induced transcriptional control of the mouse PKCδ promoter.  

 The Sp family of transcription factors, Sp1, Sp3, and Sp4, are all structurally similar 

and bind to GC and GT/CACCC boxes found in a variety of promoter and enhancers through 
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three characteristic zinc fingers located at the C terminus of the proteins. Sp1 and Sp3 are 

ubiquitously expressed, whereas the expression of Sp4 is limited to brain (Suske, 1999; 

Suske et al., 2005). Recent studies have implicated GC-rich Sp1 biding sites in the regulation 

of a number of HDAC inhibitor regulated genes, including IN4K gene (Yokota et al., 2004), 

WAF1/Cip gene (Sowa et al., 1999; Han et al., 2001), HMG-CoA synthase gene (Camarero 

et al., 2003), and HSP70 gene (Marinova et al., 2009). Dissection of the mechanism of NaBu 

induction of the PKCδ gene revealed a dependence on the Sp proteins. First, the induction of 

PKCδ promoter activity by NaBu was dramatically enhanced by overexpression of Sp1, Sp3, 

or Sp4 protein. Exogenous Sp3 had the most potent effect, whereas Sp1 and Sp4 caused 

weaker activation, which is consistent with our observation that Sp3 is the strongest 

transactivator of the basal activity of the PKCδ promoter (see Chapter II). Next, we cloned a 

dominant-negative isoform of the Sp1 or Sp3 protein, which has an intact DNA binding 

domain but lacks the full transactivation domains. We showed that its ectopic expression did 

not cause further increase in the NaBu-mediated induction of the PKCδ promoter construct; it 

had only negligible effects on the basal level of PKCδ promoter activity. Finally, we used 

pharmacological inhibitors to block the Sp signaling pathways and assessed the effects on 

NaBu-stimulated PKCδ promoter activity. Fig. 8C shows that mithramycin A, an inhibitor of 

Sp-mediated transcriptional activation (Ray et al., 1989; Blume et al., 1991), directly blocks 

the induction of PKCδ promoter activity by NaBu. In addition, another Sp inhibitor, 

tolfenamic acid, which is known to induce degradation of Sp proteins (Konduri et al., 2009), 

also significantly diminishes the NaBu responsiveness. We therefore concluded that NaBu 

activates PKCδ transcription via Sp3, Sp1 and Sp4.  
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 Although neither Sp3 level or direct association of Sp3 with the PKCδ promoter was 

affected by NaBu, NaBu treatment significantly stimulated Sp1- and Sp3-medated luciferase 

activity of the Gal4-luc reporter construct in one-hybrid assays. Sp1 and Sp3 contain multiple 

domains, including a zinc finger DNA binding domain and a bipartite transactivation domain 

composed of glutamine rich- and serine/threonine rich- regions. Using a serial Gal4-Sp1 or 

Gal4-Sp3 fusion chimeric, we were able to show that the increased transactivational potency 

of Sp1 and Sp3 by NaBu is specific to the transactivation domains of Sp1 and Sp3. Three 

subdomains, AQ, BS/T, and BQ (amino acids from 146 to 494 in Sp1; amino acids from 81 to 

499 for Sp3), are all required for NaBu-induced transcription from the PKCδ promoter. It 

remains unclear how transcriptional capacities of Sp1 and Sp3 are up-regulated by NaBu. 

Regulation of Sp1 and Sp3 activity is achieved by protein-protein interactions. Recent studies 

have revealed that both Sp1 and Sp3 functionally interact with HDAC1 and HDAC2 

(Doetzlhofer et al., 1999; Sun et al., 2002; Won et al., 2002). HDACs act as transcriptional 

repressors and repress gene expression by forming complexes with several co-repressors, 

including mSin3A, SMRT, and N-CoR (Yang and Seto, 2007). In our experimental 

conditions, overexpression of HDAC4 and HDAC5 dramatically reduced the NaBu 

enhancement of transcriptional activity of Gal4-Sp1 and Gal4-Sp3, whereas HDAC1 and 

HDAC7 displayed much less inhibition. In parallel, multiple HDACs (HDAC1, -4, -5, and 

-7) overexpression represses PKCδ-specific promoter activity. These data suggest that 

deacetylases are involved in the transcriptional activation of Sp1/3 by NaBu, possibly 

through a protein-protein interaction or protein displacement in the PKCδ promoter. At 

present, we do not know which deacetylase isoform contributes to the NaBu regulation of the 

PKCδ promoter. In addition to HDACs, Sp1 and Sp3 also bind directly to co-activator p300 
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and its homolog CBP (Suzuki et al., 2000; Walker et al., 2001). Results from our studies 

indicate that ectopic expression of p300/CBP stimulated Gal4-Sp1 and Gal4-Sp3 dependent 

transcription in the presence of NaBu. Interestingly, the p300 stimulation is independent 

upon the HAT activity. These data suggest that the cooperative, possibly physical, 

interactions between Sp proteins and p300/CBP may represent a secondary mechanism 

responsible for the NaBu-stimulated transactivating activity of Sp1/3. The recruitment of 

p300/CBP into the transcription complex is also supported by our previous observation that 

transcription from PKCδ promoter is significantly activated by overexpression of p300/CBP 

(see Chapter II). Taken together, it seems likely that NaBu alters the transcriptional activities 

of Sp1 and Sp3 by inhibiting HDACs activity, disrupting the repressor complex containing 

HDACs, and allowing the recruitment of co-activators p300/CBP to the transcription 

complex bound to the GC-boxes on the PKCδ promoter.  

 In addition to protein-protein interactions, regulation of the activities of Sp proteins 

also includes post-translational modifications. For example, the post-translation modification 

to Sp1/Sp3 by acetylation stimulates their activity (Ammanamanchi et al., 2003; Hung et al., 

2006), whereas sumoylation of Sp1/Sp3 causes their inactivation (Spengler and Brattain, 

2006). Moreover, phosphorylation of Sp1 also mediates the activation of Sp-dependent 

transcription (Fojas de Borja et al., 2001). Although our preliminary results suggest that 

NaBu does not cause gross change in the amount of acetylation of Sp1/3, which is supported 

by our observation that transcriptional activation by NaBu is HAT independent, it remains to 

be examined whether HDAC inhibition modulates specific intracellular signaling pathways 

to affect the amount of phosphorylation or other modification of Sp or Sp-interacting 

proteins.   
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 In summary, we demonstrate here for the first time that modulation of the 

HAT/HDAC balance by inhibiting HDAC activity induces pro-apoptotic PKCδ transcription 

in neurons. Moreover, induction of PKCδ is triggered by acetylation of histone proteins 

associated with the PKCδ promoter and subsequent enhancement of the transcriptional 

capacities of Sp transcription factors. We propose that such induction of pro-apoptotic PKCδ 

by HDAC inhibitors may represent a novel molecular basis for the neurodegenerative action 

of HDAC inhibitors.  
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Figure 1: Exposure to HDAC inhibitors increases PKCδ protein expression in primary 

neurons and in cell lines 

A, Primary mouse nigral (left) and striatal (right) neurons were exposed to 1 mM sodium 

butyrate (NaBu) for 24 or 48 h, after which whole protein lysates were prepared and 

subjected to Western blot analysis of PKCδ and actin expression. A representative 

immunoblot is shown. B-E, Primary mouse striatal neurons were exposed to the designated 

concentrations of HDAC inhibitors VPA (B), Scriptaid (C), TSA (D), or apicidin (E) for 48 

h, after which protein lysates were prepared and analyzed for PKCδ and actin expression by 

immunoblot. Representative immunoblots are shown. F, Left: Mouse neuroblastoma NIE115 

cells were treated with 1 mM NaBu for 24 or 48 h, lysed, and analyzed by immunoblot for 

levels of PKCδ and actin. Right: Densitometric analysis. PKCδ bands were quantified and 

normalized to that of β-actin. Values are shown as mean ± SEM of two independent 

experiments (*p<0.05; between the control and NaBu-treated samples). 
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Figure 2: HDAC inhibition increases PKCδ mRNA expression 

A-B, Primary mouse nigral (left) and striatal (right) neurons were exposed to 1 mM NaBu for 

24 or 48 h (A) or to different concentrations of NaBu for 48 h (B). Real-time RT-PCR 

analysis of the PKCδ mRNA level was performed. β-actin mRNA level served as internal 

control. C, NIE115 (left) and MN9D (right) cells were exposed to 1 mM NaBu for 24 or 48 

h, and PKCδ mRNA expression was evaluated by real-time RT-PCR analysis. β-actin mRNA 

level served as internal control. All values are expressed as a percentage of the activity of 

control and represent the mean ± SEM of three independent experiments performed in 

triplicate (*, p<0.05; **, p<0.01; ***, p<0.001; compared with the control and NaBu-treated 

samples). 
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Figure 3: Effects of in vivo sodium butyrate injection on PKCδδδδ protein level 

A-B, C57 black mice were administered 1.2 g/kg NaBu or an equivalent volume of saline via 

intraperitoneal injection for 6-24 h. Substantia nigral (A) and striatum (B) tissues from each 

mouse were harvested and prepared and analyzed for PKCδ, TH, and actin expression by 

immunoblot. Top: Representative immunoblots are shown. Bottom: Quantitation data. The 

results are normalized to β-actin and expressed as a percentage of the untreated mice. All 

data are represented as mean ± SEM from six mice per group. 
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Figure 4: Sodium butyrate increases levels of total histone acetylation and histone 

acetylation of PKCδδδδ promoter-associated chromatin 

A, NIE115 cells were exposed to 1 mM NaBu for 24 h. Total histones were prepared for 

blotting with specific anti-acetyl-lysine and anti-H3 antibodies. A representative immunoblot 

is shown. B, ChIP analysis of hyperacetylated histone H4 on PKCδ promoter. NIE115 cells 

were treated with 1 mM NaBu for 24 h, after which chromatin was prepared and sheared by 

enzymatic digestion. The sheared DNA was then immunoprecipitated with antibody against 

acetylated histone H4 or without antibody (No Ab). After reversal of cross-linking, 

immunoprecipitated DNA fragments were analyzed by PCR amplification with primers 

specific for the PKCδ promoter region that generates a 312-bp fragment. A representative gel 

electrophoresis is shown.  
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Figure 5: Regulation of PKCδδδδ promoter activity by sodium butyrate treatment and 

ectopic expression of HDACs 

A, PKCδ promoter activity is activated after treatment with NaBu. The PKCδ promoter 

reporter construct, pGL3-1694/+289 or empty vector pGL3-Basic, was transfected into 

MN9D (left) and NIE115 (right) cells. After 24 h transfection, the cells were incubated with 

or without NaBu at concentrations ranging from 0.2 to 1 mM for 24 h. Cells were then 

harvested and luciferase activities were determined and normalized by total cellular protein. 

Values are expressed as a percentage of the activity of pGL3-1694/+289-transfected control 

and represent the mean ± SEM of three independent experiments performed in triplicate (**, 

p<0.01; ***, p<0.001; between the control and NaBu-treated samples). B, PKCδ promoter 

activity is repressed by ectopic expression of HDAC proteins in NIE115 (black bar) and 

MN9D (blue bar) cells. Cells were cotransfected with pGL3-1694/+289 and 8 µg of HDAC1, 

HDAC4, HDAC5, or HDAC7 expression vector or the empty vector control (EV). Luciferase 

activity was measured after 24 h of transfection and normalized by total cellular protein. 

Values are expressed as a percentage of the luciferase activity obtained from cells transfected 

with 8 µg of empty vector (EV) and represent the mean ± SEM of three independent 

experiments performed in triplicate (**, p<0.01; ***, p<0.001; between the EV- and 

HDACs-transfected samples). C, Effects of ectopic expression of HDAC proteins on 

butyrate-induced PKCδ promoter activation. MN9D (left) and NIE115 (right) cells were 

cotransfected with pGL3-1694/+289 and increasing concentrations of HDAC1, HDAC4, 

HDAC5, or HDAC7 expression vector (from 2-8 µg) or the empty vector control (EV). After 

12 h transfection, the cells were incubated with or without NaBu (1 mM) for 24 h. Cells were 

then harvested and luciferase activities were determined and normalized by total cellular 
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protein. Values are expressed as a percentage of the luciferase activity obtained from 

NaBu-treated cells transfected with 8 µg of empty vector (EV) and represent the mean ± 

SEM of three independent experiments performed in triplicate. Variations in the amount of 

total DNA were compensated with the corresponding empty vector. 
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Figure 6: Mapping of sodium butyrate responsive elements on the PKCδδδδ promoter 

A, Schematic representation of PKCδ promoter deletion/luciferase reporter constructs. A 

series of PKCδ promoter deletion derivatives was generated by PCR methods and inserted 

into the pGL3-Basic luciferase vector. The 5’ and 3’ positions of the constructs with respect 

to the transcription start site are depicted. B-C, Each construct as shown in A was transiently 

transfected into MN9D (B) and NIE115 (C) cells. After 24 h transfection, the cells were 

incubated with (black bar) or without (blue bar) 1 mM NaBu for 24 h, and then analyzed for 

luciferase activities. Values are expressed as a percentage of the activity of 

pGL3-1694/+289-transfected control and represent the mean ± SEM of three independent 

experiments performed in triplicate. The number before the times symbol “x” at the top of 

each blue bar indicates fold activation following NaBu exposure in cells transfected with 

individual promoter construct.   
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Figure 7: Sodium butyrate activates the PKCδδδδ promoter through the GC-box elements. 

MN9D and NIE115 cells were transfected with the wild-type or mutated PKCδ promoter and 

Sp1 site-driven promoter constructs for 24 h. Cells were then incubated with or without 

NaBu (1 mM) for 24 h, and the luciferase activities were measured and normalized by total 

cellular protein. The activity measured following transfection of the wild-type construct 

(pGL3-147/+209, pGL3+165/+289, or Sp1-luc) was arbitrarily set to 100, and all other data 

are expressed as a percentage thereof. The results represent the mean ±SEM of three 

independent experiments performed in triplicate. The number before the times symbol “x” at 

the top of each blue bar indicates fold activation following NaBu exposure in cells 

transfected with the individual promoter construct. A, Schematic representation of the 

wild-type PKCδ promoter reporter constructs pGL3-147/+209 and pGL3+165/+289. The 

potential Sp sites are depicted by either circle or square. B, MN9D (left) and NIE115 (right) 

cells were transfected with 4 µg either wild-type (pGL3-147/+209) or mCACCC mutated 

luciferase reporter constructs. C, MN9D cells were transfected with the wild-type 

(pGL3+165/+289) or single mutated luciferase reporter constructs. D, Wild-type 

(pGL3+165/+289) or triple mutated luciferase reporter constructs, as indicated, were 

transfected into MN9D (left) and NIE115 (right) cells. E, Sp1 consensus sites-driven 

luciferase reporter plasmid (Sp1-luc) or its mutant construct (mSp1-luc) was individually 

transfected into MN9D (left) and NIE115 (right) cells.  

 



www.manaraa.com

 
171 

Figure 7 



www.manaraa.com

172 

Figure 8: Sp family transcriptional factors mediate responsiveness to sodium butyrate 

A, Overexpression of Sp1, Sp3, and Sp4 synergistically activated the NaBu induction of 

PKCδ promoter activity in NIE115 cells. NIE115 cells were cotransfected with 

pGL3-147/+289 and 8 µg of pN3-Sp1, pN3-Sp3, pN3-Sp4, or empty vector (EV) pN3. After 

24 h transfection, the cells were incubated with or without 1 mM NaBu for 24 h. Luciferase 

activities were then assayed and normalized by total cellular protein. The activity that was 

obtained following transfection of empty vector without NaBu treatment was set as 1, and all 

other data are expressed as a fold induction thereof. The results represent the mean ±SEM of 

three independent experiments performed in triplicate. B, Overexpression of dominant 

negative mutant Sp1 or Sp3 protein (Left: pN3-DN-Sp1; Right: pN3-DN-Sp3) lacking the 

transactivation domains did not enhance the NaBu induction of PKCδ promoter activity in 

NIE115 cells. NIE115 cells were cotransfected with pGL3-147/+289 and varying 

concentrations (4 to 8 µg) of pN3-Sp1, pN3-DN-Sp1, pN3-Sp3 or pN3-DN-Sp3 for 24 h. 

Cells were then exposed to 1 mM NaBu for 24 h, and luciferase activities were determined 

and normalized. The results represent the mean ±SEM of three independent experiments 

performed in triplicate. Variations in the amount of total DNA were compensated with the 

corresponding empty vector pN3. C, Mithramycin A inhibited the NaBu responsiveness. 

NIE115 cells were transfected with the PKCδ promoter reporter construct pGL3-147/+289 

for 24 h. After pretreatment with different doses of mithramycin A for 1 h, the cells were 

incubated with or without NaBu (1 mM) for 24 h. Cells were then harvested and luciferase 

activities were determined and normalized by total cellular protein. Values are expressed as a 

percentage of the activity obtained from control samples without NaBu and mithramycin A 
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treatment and represent the mean ± SEM of three independent experiments performed in 

triplicate (***, p<0.001; between the samples without and with mithramycin A treatment). 
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Figure 9: NaBu increases Sp1/3 transcriptional activity 

A, Sp3 expression were unaffected by NaBu treatment. NIE115 cells were incubated with or 

without 1 mM NaBu for 24 h. Whole cell lysates were prepared and immunoblotted for Sp3 

or β-actin (loading control). Both short Sp3 (sSp3) and long Sp3 (lSp3) isoforms are shown. 

B, NaBu treatment did not lead to increased Sp3 DNA binding. NIE115 cells were treated 

with or without 1 mM NaBu for 24 h, and cells were harvested and nuclear extracts were 

prepared. Nuclear extracts were incubated with biotinylated PKCδ promoter probe spanning 

the GC(1) and GC(2) sites. The presence of Sp3 was detected by immunoblotting analysis. A 

representative immunoblot is shown. C, Stimulation by NaBu of the Sp1/3 transactivational 

potential. The reporter plasmid pG5-luc, which contains five Gal4 binding sites upstream of a 

minimal TATA box, and the effector plasmids for Gal4 (pM), Gal4-Sp3 (pM-Sp3), 

Gal4-Sp3DBD (pM-Sp3DBD), Gal4-Sp1 (pM-Sp1), and Gal4-Sp1DBD (pM-Sp1DBD) were 

cotransfected into NIE115 (left) and MN9D (right) cells and incubated with or without 1 mM 

NaBu for 24 h. Luciferase activities were then determined and normalized by cellular 

protein. Values are expressed as fold induction of the activity obtained following transfection 

of the pG5-luc alone without NaBu treatment and represent the mean ± SEM of three 

independent experiments performed in triplicate. The number before the times symbol “x” at 

the top of each blue bar indicates fold activation of the activity in the presence of NaBu over 

that observed in the absence of NaBu. D, Effects of overexpression of HDAC isoforms on 

the NaBu-induced Gal4-Sp1 (left) and Gal4-Sp3 (right) transactivation. NIE115 cells were 

cotransfected with reporter plasmid pG5-luc and 8 µg of Gal4-Sp1 or Gal4-Sp3 in 

combination with 4 µg of HDAC1, HDAC4, HDAC5, or HDAC7 expression plasmids or 

empty vector control (pcDNA3.1). The cells were then treated with or without NaBu (1 mM) 
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for 24 h, and luciferase activities were determined. Values are expressed as fold induction 

over the activity obtained following transfection of the Gal4 without NaBu treatment and 

represent the mean ± SEM of three independent experiments performed in triplicate (***, 

p<0.001; between the pCDNA3.1- and HDACs-transfected samples).   
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Figure 10: Localization of the domains of Sp1 and Sp3 that are activated in response to 

NaBu stimulation 

A and C, Schematic diagram of the expression constructs carrying Gal4-Sp1 (A) and 

Gal4-Sp3 (C) fusion proteins with each of the indicated portions of Sp1 or Sp3. Amino acid 

positions demarcating each domain are indicated. AS/T, serine/threonine-rich subdomain 

within A box; AQ, glutamine-rich subdomain within A box; BS/T, serine/threonine-rich 

subdomain within B box; BQ, glutamine-rich subdomain within B box; C, C box; Zn, zinc 

finger domain; D; D box. B and D, The expression plasmids as shown in A and C, were 

cotransfected into NIE115 cells with the pG5-luc reporter plasmid. Gal4 (pM) is the empty 

vector control plasmid. At 24 h post-transfection, cells were treated with or without NaBu (1 

mM) for 24 h. Luciferase activities were then determined and normalized by cellular protein. 

Values are expressed as fold induction by NaBu for each transfected sample and represent 

the mean ± SEM of three independent experiments performed in triplicate. 
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Figure 11. Expression of CBP/p300 stimulates NaBu-induced transactivation of Sp1 and 

Sp3 

A-B, NIE115 cells were cotransfected with Gal4-Sp1 or Gal4-Sp3 expression constructs, the 

luciferase reporter plasmid pG5-luc, and the indicated amounts of CMV-driven expression 

vectors for p300, p300dHAT (A), or CBP (B). The cells were then treated with or without 

NaBu (1 mM) for 24 h, and luciferase activities were determined. Values are expressed as 

fold induction over the activity obtained following transfection of the Gal4 without NaBu 

treatment and represent the mean ± SEM of three independent experiments performed in 

triplicate.   
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Figure S1: Other HDAC inhibitors stimulate PKCδδδδ promoter activity in MN9D cells 

A-D, The PKCδ promoter reporter construct pGL3-1694/+289 was transfected into MN9D 

cells. After 24 h transfection, the cells were incubated with VPA (A), TSA (B), apicidin (C), 

or scriptaid (D) at the designated concentrations for 24 h. Cells were then harvested and 

luciferase activities were determined and normalized by total cellular protein. Values are 

expressed as a percentage of the activity of untreated control and represent the mean ± SEM 

of three independent experiments performed in triplicate (***, p<0.001; between the control 

and treated samples). 
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Figure S2: Ectopic expression of HDAC proteins inhibits the promoter activity of Sp1 

reporter plasmid (Sp1-luc) 

A, Eight µg of HDAC1, HDAC4, HDAC5, or HDAC7 expression vector or the empty vector 

control (EV), as indicated, were cotransfected with the Sp1 reporter construct Sp1-luc into 

NIE115 (black bar) and MN9D (blue bar) cells. Luciferase activity was measured after 24 h 

of transfection. Values are expressed as a percentage of the luciferase activity obtained from 

cells transfected with 8 µg of empty vector (EV) and represent the mean ± SEM of three 

independent experiments performed in triplicate (*, p<0.05; **, p<0.01; ***, p<0.001; 

between the EV- and HDACs-transfected samples). B, NaBu-induced transcriptional 

activation of Sp1-luc was repressed by ectopic expression HDACs in NIE115 cells. NIE115 

cells were cotransfected with Sp1-luc and 8 µg of HDAC1, HDAC4, HDAC5, or HDAC7 

expression vector or the empty vector control (EV). After 12 h transfection, the cells were 

incubated with or without NaBu (1 mM) for 24 h. Cells were then harvested and luciferase 

activities were determined. Values are expressed as a percentage of the luciferase activity 

obtained from NaBu-treated cells transfected with 8 µg of empty vector (EV) and represent 

the mean ± SEM of three independent experiments performed in triplicate (*, p<0.05; **, 

p<0.01; ***, p<0.001; between the EV- and HDACs-transfected samples).  
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Figure S3: Tolfenamic acid dose-dependently inhibits NaBu responsiveness in NIE115 

cells 

NIE115 cells were transfected with the PKCδ promoter reporter construct pGL3-147/+289 

for 24 h. After pretreatment with different doses of tolfenamic acid for 1 h, the cells were 

incubated with or without NaBu (1 mM) for 24 h. Cells were then harvested and luciferase 

activities were determined and normalized by total cellular protein. Values are expressed as a 

percentage of the activity obtained from control samples without NaBu and tolfenamic acid 

treatment and represent the mean ± SEM of three independent experiments performed in 

triplicate (***, p<0.001; between the samples without and with tolfenamic acid treatment). 
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Abstract 

 

 We recently demonstrated that PKCδ, an important member of the novel PKC family, 

is a key oxidative stress-sensitive kinase that can be activated by caspase-3-dependent 

proteolytic cleavage to induce dopaminergic neuronal cell death. We now report a novel 

association between α-synuclein (αsyn), a protein associated with the pathogenesis 

of Parkinson’s diseases (PD), and PKCδ, in which αsyn negatively modulates the p300 and 

NFκB dependent transactivation to down-regulate proapoptotic kinase PKCδ expression and 

thereby protects against apoptosis in dopaminergic neuronal cells. Stable-expression human 

wild-type αsyn at physiological levels in dopaminergic neuronal cells resulted in an 

isoform-dependent transcriptional suppression of PKCδ expression without changes in the 

stability of mRNA and protein or DNA methylation. The reduction in PKCδ transcription 

was mediated, in part, through the suppression of constitutive NFκB activity targeted at two 

proximal PKCδ promoter κB sites. This occurred independently of NFκB/IκBα nuclear 
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translocation, but was associated with decreased NFκB-p65 acetylation. Also, αsyn reduced 

p300 levels and its histone acetyl-transferase (HAT) activity, thereby contributing to 

diminished PKCδ transactivation. Importantly, reduced PKCδ and p300 expression also were 

observed within nigral dopaminergic neurons in αsyn transgenic mice. These findings 

expand the role of αsyn in neuroprotection by modulating the expression of the key 

proapoptotic kinase PKCδ in dopaminergic neurons. 

    

Introduction 

 

 Environmental neurotoxic insults and genetic defects in certain genes have been 

implicated in the etiology of PD (Dauer and Przedborski, 2003; Hatcher et al., 2008). 

Oxidative stress serves as a central mediator of degenerative processes in PD (Greenamyre 

and Hastings, 2004; Burke, 2008; Zhou et al., 2008); however, the key cell signaling 

mechanisms underlying oxidative damage to nigral dopaminergic neurons are not entirely 

clear. Our laboratory has been studying PKCδ-mediated cell death signaling in the oxidative 

damage of dopaminergic neurons. PKCδ, a novel PKC isoform, has been recognized as a key 

proapoptotic effector in various cell types (Brodie and Blumberg, 2003; Kanthasamy et al., 

2003). The role of PKCδ in nervous system function is beginning to emerge, and we 

demonstrated that PKCδ is an oxidative stress-sensitive kinase that is persistently activated 

by caspase-3-dependent proteolytic cleavage to mediate dopaminergic neurodegeneration in 

cellular models of PD (Anantharam et al., 2002; Kanthasamy et al., 2003; Kaul et al., 2003). 

We showed that cytochrome C release and caspase-9 and caspase-3 activation serve as 

upstream events of the PKCδ-mediated cell pathway during mitochondrial impairment (e.g., 
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MPP+) in dopaminergic neuronal cells (Kaul et al., 2003). Importantly, depletion of PKCδ 

by siRNA or blockage of PKCδ activation by overexpression of a PKCδ 

kinase-dominant-negative mutant or caspase-cleavage-resistant mutant protects against 

multiple insults in cultured neurons (Kitazawa et al., 2003; Yang et al., 2004; 

Latchoumycandane et al., 2005). Furthermore, pharmacological inhibition of PKCδ prevents 

MPTP-induced degeneration of nigrostriatal dopaminergic neurons in animal models (Zhang 

et al., 2007a). We also showed that PKCδ inhibits tyrosine hydroxylase (TH) activity and 

dopamine synthesis in dopaminergic neurons (Zhang et al., 2007b). Despite the known 

proapoptotic function of PKCδ in dopaminergic neurons, the role of this kinase in cellular 

stress induced by proteins associated with familial-PD-linked genes is not known. 

 αSyn is a presynaptic protein predominantly expressed in neurons throughout the 

mammalian brain. The physiological functions of αsyn are poorly understood, but evidence 

has suggested a role for it in synaptic plasticity, dopamine synthesis, and membrane 

trafficking (Clayton and George, 1998; Perez et al., 2002; Outeiro and Lindquist, 2003). The 

relevance of αsyn to PD pathogenesis is based on case studies of familial PD resulting from 

mutations or multiplications of αsyn gene, as well as the observation that misfolded αsyn is a 

major constituent of Lewy bodies in both familial and sporadic PD (Spillantini et al., 1998; 

Norris et al., 2004). Although altered αsyn processing is thus considered a main determinant 

of PD, a growing body of evidence suggests a protective role of native αsyn in 

neurodegeneration (Manning-Bog et al., 2003; Sidhu et al., 2004; Chandra et al., 2005; Leng 

and Chuang, 2006; Monti et al., 2007).  



www.manaraa.com

197 

 

 While studying the PKCδ-dependent cell death mechanisms, we unexpectedly found 

striking neuroprotection in an αsyn-expressing dopaminergic cell model during exposure to 

the Parkinsonian neurotoxicant MPP+. This led us to further investigate the molecular 

mechanisms underlying the neuroprotective function mediated by αsyn in dopaminergic 

neurons using cell culture and animal models. In the present study, we demonstrate a novel 

functional association between PKCδ and αsyn in which αsyn represses PKCδ expression by 

a mechanism involving modulation of both NFκB and p300 signaling pathways in a 

dopaminergic neuronal cell model and in transgenic αsyn mice. We also show that the 

deregulation of proapoptotic PKCδ expression protects dopaminergic neurons against MPP+ 

toxicity. These observations extend the physiological role of native αsyn in protecting 

against neuronal injury. 

 

Materials and Methods 

 

Reagents 

 1-methyl-4-phenylpyridinium (MPP+), actinomycin D (ActD), protein A/G beads, 

sodium butyrate, and mouse β-actin antibody were purchased from Sigma-Aldrich (St. Louis, 

MO). SN-50 peptide, garcinol, and 

N-(4-Chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) were 

obtained from Enzo Life Sciences (Plymouth Meeting, PA). Biotin-16-UTP and the Cell 

Death Detection ELISA Plus assay kit were purchased from Roche Molecular Biochemicals 

(Indianapolis, IN). Z-DEVD-FMK was obtained from Alexis Biochemicals (San Diego, CA). 

Acetyl-DEVD-amino-4-methylcoumarin (Ac-DEVD-AMC) was obtained from Bachem 
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(King of Prussia, PA). The Bradford protein assay kit was purchased from Bio-Rad 

Laboratories (Hercules, CA). The DNeasy blood & tissue kit was obtained from Qiagen 

(Valencia, CA). Hoechst 33342, Lipofectamine Plus reagent, Lipofectamine 2000 reagent, 

hygromycin B, penicillin, streptomycin, fetal bovine serum, L-glutamine, RPMI 1640 

medium, methionine-free RPMI 1640 medium, Neurobasal medium, B27 supplement, and 

Dulbecco’s modified Eagle’s medium were purchased from Invitrogen (Carlsbad, CA). 

Dynabeads M-280 was purchased from Dynal Biotech (Oslo, Norway). [3H]Acetyl-CoA, 

poly (dI-dC), [35S]-methionine, HRP-linked anti-mouse and anti-rabbit secondary 

antibodies, and the ECL chemiluminescence kit were obtained from GE Healthcare 

(Piscataway, NJ). Antibodies to PKCδ, PKCα, PKCβI, PKCζ, p65, p50, IκBα, CBP, p300, 

and αsyn (#sc-12767, only detecting αsyn of human origin) were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA); the rabbit polyclonal antibody for acetyl-lysine, mouse 

p300, and histone H3 antibodies were obtained from Milipore (Billerica, MA). αSyn 

monoclonal antibody detecting both human and rat origins was purchased from BD 

Biosciences (Syn-1, San Diego, CA); the mouse TH antibody was obtained from Chemicon 

(Temecula, CA); the goat polyclonal antibody for lactate dehydrogenase (LDH) and mouse 

monoclonal antibody for Lamin B1 were purchased from Abcam (Cambridge, MA). 

IRDye800 conjugated anti-rabbit secondary antibody was obtained from Rockland Labs 

(Gilbertsville, PA). Alexa 680-conjugated anti-mouse, Alexa 488-conjugated anti-mouse, 

Alexa 568-conjugated anti-rabbit secondary antibodies and mouse V5 antibody were 

obtained from Invitrogen. Anti-goat secondary antibody and normal rabbit IgG were obtained 

from Santa Cruz Biotechnology. 
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Plasmids 

 The plasmid encoding wild-type human αsyn protein (pCEP4-αsyn) was a kind gift 

from Dr. Eliezer Masliah (University of California, San Diego, CA). A control pCEP4 empty 

vector was purchased from Invitrogen. To prepare pLenti-V5-PKCδ and pLenti-V5-αsyn 

lentiviral vectors, full-length mouse PKCδ (gi: 6755081) and human αsyn (gi: 6806897) 

cDNA were PCR-generated from pGFP-PKCδ (kind gift of Dr. Mary E. Reyland) and 

pCEP4-αsyn with the following primer pairs, respectively. For PKCδ, forward, 

5’-CACCATGGCACCCTTCCTGCGC-3’, reverse, 5’-AATGTCCAGGAATTGCTCAAAC 

-3’; for αsyn, forward, 5’-CACCATGGATGTATTCATGAAAGGAC-3’, reverse, 5’-GGCT 

TCAGGTTCGTAGTCTTG-3’. The PCR products were then subcloned in-frame into the 

C-terminal V5-tagged expression vector pLenti6/V5-TOPO (Invitrogen) as described 

(Kitazawa et al., 2005; Latchoumycandane et al., 2005). A control lentiviral construct 

pLenti-V5-LacZ, encoding β-galactosidase fused to the V5 epitope, was also obtained from 

Invitrogen. To generate pGL3-PKCδ promoter construct, rat genomic DNA was isolated 

using the DNeasy blood & tissue kit and used as template to amplify the 1.7 kb DNA 

fragment (-1700 to +22, +1 denotes the transcription start site) of rat PKCδ gene. PCR 

conditions used were 94°C for 45 sec; 30 cycles of 94°C for 30 sec, 64.6°C for 30 sec, and 

72°C for 2 min; and 72°C for 10 min. Following PCR, the amplified product was cloned into 

the XhoI/HindIII sites of pGL3-Basic vector (Promega, Madison, WI). All constructs were 

verified by DNA sequencing. 
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Primary mesencephalic cultures and treatment 

 All of the procedures involving animal handling were approved by the Institutional 

Animal Care Use Committee (IACUC) at the Iowa State University. Primary mesencephalic 

neuronal cultures were prepared as described in our recent publications (Ghosh et al., 2010; 

Zhang et al., 2007c). Briefly, 24-well plates containing coverslips were coated overnight with 

0.1 mg/ml poly-D-lysine. Mesencephalon tissue was dissected from gestational 14-day-old 

mouse embryos and kept in ice-cold Ca2+-free Hanks’s balanced salt solution. Cells were 

then dissociated in Hank’s balanced salt solution containing trypsin-0.25% EDTA for 30 min 

at 37 °C. After the incubation, 10% heat-inactivated fetal bovine serum in Dulbecco’s 

modified Eagle’s medium was added to inhibit trypsin digestion. The cells were triturated 

and suspended in Neurobasal medium supplemented with 2% Neurobasal supplement (B27), 

500 µM L-glutamine, 100 IU/ml penicillin, and 100 µg/ml streptomycin, plated at 1 × 106 

cells in 0.5 ml/well and incubated in a humidified CO2 incubator (5% CO2 and 37 °C). Half 

of the culture medium was replaced every 2 days, and experiments were conducted using 

between 6 and 7 day cultures. After exposure to the NFκB inhibitor SN50 and the p300 

inhibitor garcinol or the activator CTPB for 24 h, the primary cultures were processed for 

immunocytochemical analysis. 

 

Cell culture and stable expression of αααα-synuclein 

 Rat immortalized mesencephalic dopaminergic neuronal cell line (1RB3AN27, 

referred to as N27 cells) was a kind gift of Dr. Kedar N. Prasad (University of Colorado 

Health Sciences Center, Denver, CO). Rat striatal GABAergic M213-20 cell line was a 

generous gift from Dr. William Freed (National Institute on Drug Abuse, National Institutes 
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of Health, Baltimore, MD). Mouse dopaminergic MN9D cell line was a kind gift from Dr. 

Syed Ali (National Center for Toxicological Research/FDA, Jefferson, AR). Rat 

pheochromocytoma PC12 dopaminergic cell line and human dopaminergic neuroblastoma 

SH-SY5Y cell line were obtained from the American Type Culture Collection (ATCC, 

Rockville, MD). N27 and PC12 cells were cultured as described (Zhang et al., 2007c). 

M213-20, MN9D, and SH-SY5Y cells were grown in Dulbecco’s modified Eagle’s medium 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 50 units penicillin, and 50 

units streptomycin.   

 To generate a stable cell line expressing the human wild-type αsyn, N27 cells were 

stably transfected with pCEP4-αsyn or pCEP4 empty vector by Lipofectamine Plus reagent 

according to the procedure recommended by the manufacturer and described (Kaul et al., 

2005a). The stable transfectants were selected in 400 µg/ml of hygromycin and further 

maintained in 200 µg/ml of hygromycin added to N27 growth media.  

 

Animals 

 Transgenic mice (stock number 008389) that express human wild-type αsyn under 

the control of the Thy-1 promoter (Andra et al., 1996) and non-carrier littermate control mice 

were purchased from the Jackson Laboratory (Bar Harbor, Maine). This line of transgenic 

animals has been characterized previously (Chandra et al., 2005). It expresses high levels of 

αsyn throughout the brain, but unlike some mutant transgenic lines, it does not display the 

Parkinson’s like phenotype. Six- to eight-week-old male transgenic and non-carrier control 

mice were housed in standard conditions: constant temperature (22±1°C), humidity (relative, 

30%), and a 12 h light/dark cycle with free access to food and water. Animal care procedures 
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strictly followed the NIH Guide for the Care and Use of Laboratory Animals and were 

approved by the Iowa State University IACUC. 

 

Immunoblotting and immunoprecipitation 

 Cell lysates were prepared as described previously (Zhang et al., 2007c). Nuclear and 

cytoplasmic extracts were isolated using the NE-PER nuclear and cytoplasmic extraction kit 

(Thermo Scientific, Waltham, MA). The protein concentrations were determined with the 

Bradford protein assay kit at 595 nm. Immunoblotting and densitometric analysis of 

immunoblots were performed as described previously (Kanthasamy et al., 2006). Briefly, the 

indicated protein lysates containing equal amounts of protein were fractionated through a 

7.5%-15% SDS-polyacrylamide gel and transferred onto a nitrocellulose membrane (Bio-Rad 

Laboratories). Membranes were blotted with the appropriate primary antibody and developed 

with HRP-conjugated secondary antibody followed by ECL detection. IRDye800 anti-rabbit 

or Alexa 680-conjugated anti-mouse antibodies were also used as secondary antibodies. The 

immunoblot imaging was performed with either a Kodak image station IS2000MM (Kodak 

Molecular Imaging System, Rochester, NY) or an Odyssey infrared imaging system (Li-cor, 

Lincoln, NE), and data were analyzed using one-dimensional image analysis software 

(Kodak Molecular Imaging System) or Odyssey software 2.0 (Li-cor). Blots were stripped 

and re-probed with anti-β-actin antibody as an internal control for loading.  

 For immunoprecipitation studies, briefly, cells were lysed in immunoprecipitation 

buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 10 mM NaF, 1% Trition 

X-100, 1 × halt protease inhibitor cocktails), and the resultant lysates were incubated on ice 

for 15 min followed by centrifugation at 16,000 × g for 15 min. The supernatant fractions 
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were then pre-cleared with protein A or protein G beads for 30 min at 4°C followed by 

centrifugation at 16,000 × g at 4 °C for 10 min. Five microgram of the indicated antibody 

along with 50 µl of 50% of protein A or protein G beads was added to the cell lysates and 

incubated overnight at 4 °C on a rotator. The immunoprecipitates were collected, washed 

extensively with cold PBS, and prepared for SDS/PAGE gel by addition of 2 × SDS sample 

buffer and then boiling for 10 min.  

 

Transfections and infections 

 Transient transfections of αsyn-expressing and vector control N27 cells with 

promoter reporter were performed using Lipofectamine 2000 reagent in accordance with the 

manufacture’s protocol. Cells were plated in 6-well plates at 4 × 105 cells/well one day 

before transfection. Four microgram of pGL3-PKCδ construct or pGL3-Basic empty vector 

was transiently transfected, and 0.5 µg of β-galactosidase vector (pcDNA3.1-βgal, 

Invitrogen) was added to each well to monitor transfection efficiencies. Twenty-four h 

post-transfection, the cells were lysed in 200 µl of report lysis buffer (Promega). Luciferase 

activity was measured on a luminometer (Reporter Microplate, Turner Designs, Sunnyvale, 

CA) using the Luciferase assay kit (Promega), and β-galactosidase activity was detected 

using the β-galactosidase assay kit (Promega). The ratio of luciferase activity to 

β-galactosidase activity was used as a measure of normalized luciferase activity.  

 Electroporation of small interfering RNAs (siRNAs) was conducted by using a 

Nucleofector device and the Cell line nucleofector kit (all from Lonza, Walkersville, MD) 

following the manufacturer’s instructions. Specific αsyn siRNA (#16708) and scrambled 
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negative control siRNA (#4611) were purchased from Ambion (Austin, TX). The 

p300-specific siRNA (#SI02989693) was purchased from Qiagen. The NFκB-p65-specific 

siRNA as described (Chen et al., 2006) was synthesized by Integrated DNA Technologies 

(Coralville, IA). The siRNA sequence for αsyn is 5’-GCAGGAAAGACAAAAGAGGtt-3’ 

and for NFκB-p65 is 5’-GCAGUUCGAUGCUGAUGAAUU-3’. In each electroporation, 2 × 

106 cells were resuspended in 100 µl of the electroporation buffer supplied with the kit, along 

with 1.3 µg of gene-specific siRNA or scrambled negative siRNA. The sample was then 

electroporated using the pre-set nucleofector program #A23 recommended by the 

manufacture. After electroporation, the cells were immediately transferred to pre-warmed 

culture medium. The next day media were replaced to normal growth media. Mock 

transfection with electroporation buffer alone was also included as a transfection control. 

After 72 h or 96 h from the initial transfection, the cell lysates were collected and analyzed 

using Western blotting to confirm the extent of αsyn, NFκB-p65, p300, and PKCδ 

expression. Where indicated, the cell nuclear extracts were prepared and used for EMSA 

analysis.  

 Lentiviral constructs (pLenti-V5-PKCδ, pLenti-V5-αsyn, or control construct 

pLenti-V5-LacZ) were packaged into virus via transient transfection of the 293FT packaging 

cell line (Invitrogen) using Lipofectamine 2000 reagent, as described (Cooper et al., 2006). 

The lentivirus in the medium was collected by centrifuging at 72 to 96 h post-transfection. 

All transductions were performed at a multiplicity of infection (MOI) of 1 in the presence of 

polybrene (6 µg/ml). To assess the effect of transient human αsyn overexpression on PKCδ 

expression, N27 cells were infected with lentiviral particles encoding V5-αsyn or V5-LacZ 

for 48 h and collected for immunoblot analysis. To test the effects of restoring PKCδ 



www.manaraa.com

205 

 

expression on MPP+ neurotoxicity, stable αsyn-expressing and vector control N27 cells were 

infected with PKCδ or control LacZ lentivirus for 24 h. The cells were then treated with fresh 

media containing 300 µM MPP+ for 48 h prior to analysis. In experiments aimed at detecting 

the expression of pLenti-V5-PKCδ and pLenti-V5-LacZ, the cells were incubated with 

lentivirus for 48 h and collected for immunoblot analysis. 

 

Caspases-3 activity and DNA fragmentation assays 

 Caspases-3 activity was measured as previously described (Kaul et al., 2005a). 

Briefly, after treatment with 300 µM MPP+, cells lysates were prepared and incubated with a 

specific fluorescent substrate, Ac-DEVD-AMC (50 µM) at 37 °C for 1 h. Caspases-3 activity 

was then measured using a SpectraMax Gemini XS Microplate Reader (Molecular Devices, 

Sunnyvale, CA) with excitation at 380 nm and emission at 460 nm. The caspase-3 activity 

was calculated as fluorescence units per milligram of protein.  

 DNA fragmentation assay was performed using a Cell Death Detection ELSA plus kit 

as previously described (Anantharam et al., 2002). Briefly, after treatment with 300 µM 

MPP+, cells were collected and lysed in 450 µl of lysis buffer supplied with the kit for 30 

min at room temperature, and spun down at 2300 × g for 10 min to collect the supernatant. 

The supernatant was then used to measure DNA fragmentation as per the manufacture’s 

protocol. Measurements were made at 405 and 490 nm using a SpectraMax 190 

spectrophotometer (Molecular Devices).  

 

Immunostaining and microscopy 

 After perfusion with 4% paraformaldehyde, the mice brains were removed, 
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immersion fixed in 4% paraformaldehyde, and cryoprotected in sucrose. Then the brain was 

cut on a microtome into 20 µm sections. Sections from substantia nigra were used for 

dual-labeled immunofluorescence. After washing with PBS, the brain sections were rinsed 

with blocking buffer containing 2% BSA, 0.05% Tween-20, and 0.5% Triton X-100 in PBS 

for 45 min and then incubated overnight at 4°C with the following combinations of primary 

antibodies: anti-PKCδ (1:250, Santa Cruz) and anti-TH (1:1800, Chemicon), or anti-p300 

(1:350, Santa Cruz) and anti-TH (1:1800, Chemicon), followed by incubation with anti-rabbit 

Alexa 568-conjugated (red, 1:1000) and anti-mouse Alexa 488-conjuated secondary 

antibodies (green, 1:1000) for 1 h at room temperature. After this, Hoechst 33342 (10 µg/ml) 

was added for 3 min at room temperature to stain the nucleus. The brain sections were 

mounted and observed with either an oil-immersion 63× PL APO lens with a 1.40 numerical 

aperture or an oil-immersion 100× PL APO lens with a 1.40 numerical aperture using a Leica 

SP5 X confocal microscope system (all from Leica, Allendale, NJ) at Confocal Microscopy 

and Image Analysis Facility at Iowa State University. For final output, images were 

processed using LAS-AFlite software (Leica). For computer-assisted image analysis, a 0.051 

mm2 area was delineated using this LAS-AFlite software and TH-PKCδ colocalized 

dopaminergic neurons were counted independently and blindly by two investigators. Data 

were expressed as either percent of TH-positive cells containing PKCδ 

immunoreactivity/total TH neurons or number of TH-positive cells containing PKCδ 

immunoreactivity/area (mm2).   

 Immunostaining of PKCδ, TH, and αsyn was performed in primary mesencephalic 

neurons, αsyn-expressing and vector control N27 cells. Cells grown on coverslips pre-coated 

with poly-L-lysine or poly-D-lysine were washed with PBS and fixed in 4% 
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paraformaldehyde for 30 min. After washing, the cells were permeabilized with 0.2% Triton 

X-100 in PBS, washed with PBS, and blocked with blocking agent (5% bovine serum 

albumin, 5% goat serum in PBS). Cells were then incubated with the antibody against human 

αsyn (1:500, Santa Cruz), TH (1:1800, Chemicon), and PKCδ (1:1000, Santa Cruz) 

overnight. Fluorescently conjugated secondary antibody (Alexa-488-conjugated anti-mouse 

antibody, green, 1:1500, or Alexa 568-conjugated anti-rabbit antibody red, 1:1500) was used 

to visualize the protein. Nuclei were counterstained with Hoechst 33342 for 3 min at a final 

concentration of 10 µg/ml. Finally, images were viewed using an oil-immersion 60 × Plan 

Apo lens with a 1.45 numerical aperture on a Nikon inverted fluorescence microscope 

(model TE2000, Nikon, Tokyo, Japan). Images were captured with a SPOT color digital 

camera (Diagnostic Instruments, Sterling Heights, MI) and processed using Metamorph 5.07 

image analysis software (Molecular Devices). For quantitative analysis of 

immunofluorescence, we measured average pixel intensities from the region of interest (ROI) 

using the Metamorph 5.07 image analysis software. 

 

Pulse-chase assays 

 Before pulse-labeling, cells were starved of methionine for 30 min. Cells were 

subsequently pulse-labeled with methionine-free RPMI 1640 medium containing 125 µCi/ml 

[35S]-methionine for 2 h. Afterwards, cells were rinsed twice with warm PBS, and chased in 

complete growth medium for various times up to 48 h. At different chase times, the cells 

were collected and subsequently subjected to immunoprecipitation using PKCδ antibody as 

described above. The immunoprecipitates were separated with 10% SDS-PAGE and 

analyzed by autoradiography at 24-48 h using a PhosphoImager (Personal Molecular Imager 
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FX, Bio-Rad Laboratories). Band quantifications were processed using Quantity One 4.2.0 

software (Bio-Rad Laboratories). 

 

RT-PCR and methylation-specific PCR (MSP) 

 Total RNA was isolated and converted to cDNA using Absolutely RNA miniprep kit 

from Stratagene (La Jolla, CA) and High capacity cDNA archive kit from Applied 

Biosystems (Foster City, CA), respectively. For semiquantitative RT-PCR, 1 µl of the reverse 

transcriptase reaction mixture served as a template in PCR amplification. PCR amplifications 

were performed using the following program: 94 °C for 3 min; 35 cycles of 94 °C for 45 sec, 

56 °C (PKCδ, η, and λ) or 60 °C (PKCα, ε, ζ, and GAPDH) for 30 sec, 72 °C for 45 sec. 

PCR products were then separated by electrophoresis in 1-2% agarose gel and visualized by 

ethidium bromide staining.   

 Quantitative real-time RT-PCR was performed using Brilliant SYBR Green QPCR 

Master Mix kit and the Mx3000P QPCR system (all from Stratagene). The p300 primer set 

was using a QuantiTect Primers assay (Qiagen, #QT01083859). The β-actin was used as an 

internal control for RNA quantity (sequence is listed in supplemental Table 1). The reaction 

mixture included 1 µl of cDNA (100 ng RNA used), 12.5 µl of 2 × master mix, 0.375 µl of 

reference dye, and 0.2 µM of each primer. Cycling conditions contained an initial 

denaturation at 95 °C for 10 min, followed by 40 cycles of 95 °C for 30 sec, 60 °C for 30 sec, 

and 72 °C for 30 sec. Fluorescence was detected during the annealing/extension step of each 

cycle. Dissociation curves were run to verify the singularity of the PCR product. The data 

were analyzed using the comparative threshold cycle method. Briefly, the relative PKCδ 

expression (expressed as fold differences) between αsyn-expressing and vector control N27 
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cells was calculated as 2-(∆CtSYN - ∆CtVEC), where ∆Ct represented the mean Ct value of 

PKCδ or p300 after normalization to β-actin internal control. 

 For MSP experiments, genomic DNA was isolated from αsyn-expressing and vector 

control N27 cells using the DNeasy blood & tissue kit as mentioned earlier. Bisulfite 

modification was subsequently carried out on 500 ng of genomic DNA by the 

MethylDetector bisulfite modification kit (Active Motif, Carlsbad, CA) according to the 

manufacturer’s instructions. Two pairs of primers were designed to amplify specifically 

methylated or unmethylated PKCδ sequence using MethPrimer software (Li and Dahiya, 

2002). The cycling condition was: 94 °C for 3 min, after which 35 cycles of 94 °C for 30 sec, 

52.5 °C for 30 sec, 68 °C for 30 sec, and finally 72 °C for 5 min. PCR products were loaded 

onto 2% agarose gels for analysis. Negative control PCRs were performed using water only 

as template. 

 

Assessments of mRNA stability 

 The PKCδ mRNA decay experiments were conducted as described (Jing et al., 2005) 

with some modification. Briefly, cells were treated with 5 µg/ml actinomycin D to block de 

novo transcription, total RNA were isolated at selected time points thereafter, and the amount 

of PKCδ mRNA was determined by quantitative real-time RT-PCR. The PKCδ mRNA 

values were normalized to the amount of β-actin internal control in each sample and 

expressed as the percentage of mRNA levels present at time 0 (set to 100%) prior to the 

addition of actinomycin D. 
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Nuclear run-on assays 

 The nuclear run-on assays were performed with minor modifications to the method 

described by (Patrone et al., 2000). Nuclei were prepared from 60 × 106 cells by 

resuspending in 4 ml of Nonidet P-40 lysis buffer (10 mM Tris-HCl, pH 7.4, 3 mM MgCl2, 

10 mM NaCl, 150 mM sucrose and 0.5 % Nonidet P-40), and a 5-min incubation in ice 

followed. Nuclei were isolated by centrifugation, washed with cell lysis buffer devoid of 

Nonidet P-40, and the pellets were resuspended in 100 µl of freezing buffer (50 mM 

Tris-HCl, pH 8.3, 40 % glycerol, 5 mM MgCl2 and 0.1 mM EDTA). One volume of 

transcription buffer (200 mM KCl, 20 mM Tris-HCl, pH 8.0, 5 mM MgCl2, 4 mM 

dithiothreitol, 4 mM each of ATP, GTP and CTP, 200 mM sucrose and 20% glycerol) was 

added to nuclei. Eight µl of biotin-16-UTP was then supplied to the mixture. After incubation 

for 30 min at 29 °C, the reaction was terminated and total RNA was purified using the 

Absolutely RNA miniprep kit according to the manufacturer’s instructions. RNA was eluted 

in 60 µl of nuclease-free water and 10 µl was saved as total nuclear RNA. Dynabeads M-280 

(50 µl) was subsequently used to capture the run-on RNA. Three µl of run-on RNA or 10 µg 

total nuclear RNA was subjected to cDNA synthesis and quantitative real-time PCR as 

described above. To monitor undesired RNA capture by Dynbeads, control reactions were 

also performed in which conditions were identical except that UTP was added to the 

transcription system in the place of biotin-16-UTP. 

 

Electrophoretic mobility shift assays (EMSA) 

 Nuclear and cytoplasmic proteins were prepared using the NE-PER nuclear and 

cytoplasmic extraction kit as described before. The IRyeTM700-labeled oligos PkcδNFκBs 
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and NFκB, corresponding to the NFκB-like sequences within the rat PKCδ promoter and the 

consensus sequence of NFκB respectively, were synthesized by Li-cor and used as labeled 

probes. The unlabeled competitor oligos were obtained from Integrated DNA Technologies. 

All oligos sequences are illustrated in supplemental Table 5. Protein-DNA binding reactions 

were performed with 5-10 µg of nuclear or cytoplasmic proteins, 1 µl of labeled 

oligonucleotide (50 fmol) in a total volume of 20 µl of mixture containing 10 mM Tris-HCl 

(pH 7.5), 50 mM NaCl, 0.25% Tween-20, 2.5 mM dithiothreitol (DTT), 0.05 mM EDTA, 

and 1 µg of poly (dI-dC). After incubation at room temperature for 20 min, the resulting 

DNA-protein complexes were resolved on a 6.6% non-denaturing polyacrylamide gel at 10 

V/cm for about 50 min at 4 °C in 1 × TGE buffer. Gels were analyzed on the Odyssey 

infrared imaging system (Li-cor). In competition experiments, before the addition of the 

labeled probe, nuclear extracts were pre-incubated for 30 min at room temperature with a 

100-fold molar excess of unlabeled competitor oligos. In super shift experiments, 400 ng of 

anti-p50, anti-p65, or normal rabbit IgG was incubated with nuclear extracts for 30 min at 

room temperature prior to the addition of labeled probe.  

 

Histone acetyltransferase activity assays 

 p300 HAT activity was measured using a p300/CBP immunoprecipitation HAT assay 

kit from Millipore following the manufacture’s protocol with minor modifications as 

previously described (Nakatani et al., 2003). Briefly, one milligram of nuclear extracts from 

αsyn-expressing and vector control N27 cells were precipitated with 5 µg of anti-p300 

antibody or normal mouse IgG and 50 µl of magnetic protein-G beads (Active Motif) at 4°C 

overnight. The collected beads were washed with three times cold PBS and incubated with 
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HAT assay cocktail (50 µl) containing 10 µl of core histones and 100 µM [3H]acetyl-CoA 

(0.5 µCi/µl) at 30 °C for 30 min. Fifteen µl of the supernatant of each sample was placed on 

P81 square papers and [3H]acetyl incorporation into the substrates was measured using a 

scintillation counter. Data were expressed as mean values of counts, subtracted from 

background values measured in samples containing normal mouse IgG. 

 

Chromatin immunoprecipitation assays (ChIP) 

 The ChIP-IT Express enzymatic kit from Active Motif was used to analyze the in vivo 

binding of NFκB p65 and p50 subunits, and p300/CBP co-activators onto the rat PKCδ 

promoter region. Unless otherwise stated, all reagents, buffers, and supplies were included in 

the kit. The ChIP assays were performed following the manufacture’s instructions with slight 

modifications. Briefly, ~1.5 × 107 cells were fixed in 1% formaldehyde for 10 min at room 

temperature. After cross-linking, the nuclei were prepared and chromatin was enzymatic 

digested to 200-1500 bp fragments (verified through running on a 1% agarose gel) by 

incubation with the enzymatic shearing cocktail for 12 min at 37 °C. The sheared chromatin 

was collected by centrifuge, and a 10-µl aliquot was saved as an input sample. Aliquots of 

70-µl sheared chromatin were incubated overnight with rotation at 4 °C with protein G 

magnetic beads and three µg indicated antibody. Equal aliquots of each chromatin sample 

were saved for no-antibody controls. After extensive washing, reversal of cross-links, and 

proteinase K digestion, the elute DNA in the immunoprecipitated samples was directly 

collected on a magnetic stand, and the input DNA was purified by phenol/chloroform 

extraction and ethanol precipitation. The DNA samples were analyzed by PCR using primer 

pairs designed to amplify a region (-103 to +60) within PKCδ promoter. Conditions of linear 
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amplification were determined empirically for the primers. PCR conditions are as follows: 

94 °C 3 min; 94 °C 20 sec, 58 °C 30 sec, and 72 °C 30 sec for 35 cycles. The PCR products 

were resolved by electrophoresis in a 1.0% agarose gel and visualized after ethidium bromide 

staining.   

 

Bioinformatics 

 CpG island identification was analyzed with the web-based program CpG Island 

Searcher (Takai and Jones, 2002). This program defines a CpG island as a region with a G+C 

content ≥ 50%, longer than 200 bp nucleotides, and an Observation/Expectation CpG ratio > 

0.6. The search for the phylogenetic sequence conservation among rat, human, murine, and 

cow PKCδ promoter was conducted with the DiAlign professional TF Release 3.1.1 (DiAlign 

TF) (Morgenstern et al., 1996; Morgenstern et al., 1998) (Genomatix Software, Munich, 

Germany). This program identifies common transcription factor binding sites matches 

located in aligned regions though a combination of alignment of input sequences using 

multiple alignment program DiAlign (Morgenstern et al., 1996; Morgenstern et al., 1998) 

with recognition of potential transcriptional factor binding sites by MatInspector software 

(Cartharius et al., 2005) (Genomatix Software), which employed matrices library version 8.0. 

The nucleotide distribution matrix information listed in supplemental Table 4 was obtained 

through the use of the MatBase program (Genomatix Software). 

 

Data analysis 

 All statistical analyses were performed using the Prism 4.0 software (GraphPad 

Software, San Diego, CA). In PKCδ protein and mRNA degradation experiments, a 
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one-phase exponential decay model was fitted to each data set using the nonlinear regression 

analysis program of Prism 4.0 software as follows: Y = Span e-Kt + Plateau, where Y starts at 

Span + Plateau and decays with a rate constant K. The half-life of the each mRNA or protein 

was subsequently determined by 0.693/K. The goodness-of-fit was assessed as the square of 

the correlation coefficient (R2). Data were analyzed either by Student’s t test or one-way 

ANOVA followed by Tukey’s pairwise multiple comparison test. Statistical significance was 

defined as p<0.05. 

 

Results 

 

Expression of human αααα-synuclein in N27 dopaminergic cells down-regulates PKCδ 

expression in an isoform-specific manner  

 We previously reported that PKCδ serves as a key proapoptotic effector in 

dopaminergic neurons, and caspase-3-mediated proteolytic cleavage of PKCδ is a key 

mediator in multiple models of dopaminergic neurodegeneration (Anantharam et al., 2002; 

Kaul et al., 2003; Yang et al., 2004; Kaul et al., 2005b; Kanthasamy et al., 2006; Zhang et al., 

2007a). Growing evidence indicates that the neuroprotective mechanism of endogenous αsyn 

involves deregulation of gene expression of specific stress-signaling molecules linked to 

neuronal survival (Alves Da Costa et al., 2002; Hashimoto et al., 2002; Manning-Bog et al., 

2003; Albani et al., 2004). Analysis in a variety of cell lines, MN9D, N27, PC12, M213-20, 

and SH-SY5Y, revealed a striking inverse correlation between PKCδ and αsyn protein levels 

(Supplemental Fig. 1). These observations raised the question of whether αsyn might 

regulate PKCδ expression and thereby promote cell survival. To address this hypothesis, we 
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engineered rat-immortalized mesencephalic dopaminergic N27 cell line to express human 

wild-type αsyn by stably transfecting with plasmid pCEP4-αsyn or pCEP4 control vector. 

The widely used N27 neuronal cell model represents a homogeneous population of 

TH-positive dopaminergic cells and is highly useful for studying degenerative mechanisms in 

PD (Clarkson et al., 1999; Kaul et al., 2005b; Peng et al., 2005a; Zafar et al., 2007; Zhang et 

al., 2007c; Lee et al., 2009). The stable expression of human αsyn in stable N27 cells was 

assessed by Western blot assay using the αsyn antibody (Syn-1) that detects both 

exogenously expressed human αsyn and endogenous rat αsyn. As shown in Fig. 1A, the αsyn 

endogenous level was too low to be detected in vector control N27 cells, whereas 

exogenously expressed αsyn could readily be detected in the αsyn-expressing N27 cells. 

Importantly, the level of αsyn achieved in αsyn-expressing N27 cells appears to be within 

the physiological range, as this level was comparable to that seen in the rat brain substantia 

nigra (rSN) homogenates (Fig. 1A). Further analysis of subcellular localization of αsyn in the 

stable cells demonstrated that αsyn is exclusively in the cytoplasm but absent in the nucleus 

(Supplemental Fig. 2). We next determined whether αsyn affects PKCδ expression. Western 

blot analysis (Fig. 1B, left panel) of various PKC isoforms showed a selective suppression of 

PKCδ in αsyn-expressing N27 cells. Quantitative analysis showed that αsyn caused a ~50% 

reduction in PKCδ protein levels, whereas PKCα, βI, and ζ were not affected (Fig. 1B, right 

panel). To further determine whether this specific inhibition occurred at the mRNA level, 

semiquantitative RT-PCR (primer sequences are listed in supplemental Table 1) was carried 

out (Fig. 1C, left panel). Similar to the trend seen in protein levels, only PKCδ mRNA 

expression was markedly reduced by αsyn. qRT-PCR analysis revealed a dramatic ~80% 
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reduction in PKCδ mRNA in αsyn-expressing N27 cells (Fig. 1C, right panel). To ensure the 

observed down-regulation of PKCδ gene expression in these two stable cell lines was not an 

artifact from the selection or maintenance of stable transfectants, we examined the PKCδ 

expression in transiently transduced N27 cells. As shown in Fig. 1D, transient transduction of 

N27 cells with lentivirus encoding human wild-type αsyn-V5 fusion also resulted in a 

dramatic decrease in expression of PKCδ gene compared with control lentivirus 

(lacZ-V5)-infected cells. Taken together, these data demonstrate that αsyn is capable of 

repressing the PKCδ isoform in N27 dopaminergic cells.  

 

Dysregulation of PKCδ by αααα-synuclein protects against MPP+-induced cell death in 

dopaminergic N27 cells 

 After we identified that increased αsyn inhibits the steady-state level of PKCδ, we 

investigated the significance of PKCδ downregulation by αsyn. Previously, we established 

the proapoptotic function of PKCδ in dopaminergic neurons using siRNA and dominant 

negative PKCδ mutants (Yang et al., 2004; Kitazawa et al., 2005; Latchoumycandane et al., 

2005). In the present study, we employed a lentivirus encoding PKCδ fused to the V5 epitope 

(PKCδ-V5) to markedly overexpress PKCδ and investigated whether PKCδ gain of function 

influences the neurotoxicity in N27 cells following MPP+ treatment. The increased 

expression of PKCδ after lentiviral infection compared with control lentivirus-infected cells 

(LacZ) was confirmed by Western blot assay (Supplemental Fig. 3). The extent of 

MPP+-induced apoptosis was measured by DNA fragmentation (Fig. 2A, left panel) and 

caspase-3 enzymatic activity (Fig. 2A, right panel) analysis. In LacZ control-infected 
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cultures, αsyn-expressing N27 cells almost completely suppressed MPP+-induced DNA 

fragmentation and caspase-3 activity as compared to vector control N27 cells. Importantly, 

introduction of PKCδ significantly increased MPP+-induced DNA fragmentation (p<0.01) 

and caspase-3 activity (p<0.05) in αsyn-expressing N27 cells. These results suggest that 

downregulation of PKCδ by αsyn is protective. In further support of these data, 

MPP+-induced PKCδ proteolytic cleavage and its nuclear translocation, events associated 

with apoptosis (Anantharam et al., 2002; DeVries et al., 2002; Kaul et al., 2003; Kaul et al., 

2005b), were almost completely diminished in αsyn-expressing N27 cells compared to 

vector control N27 cells (Fig. 2B).  

 Next, we examined the localization of αsyn in the stable cells following MPP+ 

treatment. As shown in Fig. 2C, the exclusive localization of αsyn in the cytoplasm was not 

affected by MPP+, as determined by Western blot and immunostaining. Interestingly, a recent 

study demonstrates that subcellular localization of αsyn may contribute to its neurotoxicity: 

nuclear localization of αsyn promotes apoptosis whereas cytoplasmic localization of αsyn 

protects cells (Kontopoulos et al., 2006). Taken together, these results support a model in 

which αsyn acts in the cytoplasm to protect against MPP+-induced dopaminergic cell death 

via negative regulation of the proapoptotic kinase PKCδ expression.  

 

Increased αααα-synuclein expression in an animal model is associated with decreased 

PKCδ levels within nigral dopaminergic neurons  

We further extend our findings from a dopaminergic cell culture model to an animal 

model. Since recent studies conducted in our laboratory demonstrated that PKCδ is expressed 
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in dopaminergic neurons in nigral regions of the brain (Zhang et al., 2007c), we decided to 

determine whether an inverse relationship between αsyn and PKCδ expression in nigral 

dopaminergic neurons existed in vivo. For this purpose, we carried out immunohistological 

studies in transgenic mice that overexpress wild-type human αsyn (htg) and in 

non-transgenic control (non-tg) mice. This transgenic line has been characterized previously 

(Chandra et al., 2005); it expresses high levels of αsyn throughout the brain under the 

regulatory control of the Thy-1 promoter, and unlike some similar mutant transgenic lines, it 

does not display the Parkinson’s like phenotype upon aging. This mouse line also displayed a 

dramatic resistance to the neurodegeneration caused by deletion of cysteine-string protein-α 

(CSPα) (Chandra et al., 2005). The effects of overexpression of αsyn on PKCδ expression 

within nigral dopaminergic neurons were studied by double-immunostaining nigral tissues 

for TH (marker of dopaminergic neurons) and PKCδ. As shown in Fig. 3A, a strong PKCδ 

immunoreactivity (stained in red) was observed in control mice in the cytoplasm of 

TH-expressing neurons (stained in green). Moreover, the majority of the TH neurons 

displayed co-localization of TH and PKCδ (yellow color in the merged panel). In contrast, 

the αsyn transgenic mice exhibited a significant decrease in PKCδ immunoreactivity within 

TH neurons as well as significant loss of the corresponding co-localization of TH and PKCδ. 

Quantitative analysis of TH-PKCδ co-localized dopaminergic neurons relative to the number 

of total TH neurons showed that >70% of TH-positive cells lost their PKCδ expression in 

αsyn transgenic mice (Fig. 3B) as compared to control mice. Similar results were obtained 

by quantifying TH-PKCδ co-localized dopaminergic neurons in a delineated area 

(Supplemental Fig. 4). Western blot analysis confirmed a ~6-fold increase in the levels of 
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αsyn in the substantia nigra of αsyn transgenic mice (Fig. 3C). Overall, these results 

establish an in vivo relevance of the relationship between αsyn overexpression and PKCδ 

expression in dopaminergic neurons. 

 

αααα-Synuclein attenuates PKCδ promoter activation and transcription efficiency without 

affecting PKCδ protein turnover or mRNA stability  

 We next investigated the molecular mechanism underlying the αsyn-induced 

suppression of PKCδ expression. First, we examined whether αsyn could destabilize PKCδ 

protein in N27 cells. To this end, we investigated the PKCδ turnover rate by performing a 

pulse-chase experiment on both αsyn-expressing and vector control N27 cells labeled with 

[35S]-methionine. αSyn had no effect on PKCδ protein turnover (Fig. 4A). The relative 

half-life of PKCδ was estimated to be 14.77 h in vector control and 14.07 h in 

αsyn-expressing N27 cells (Supplemental Table 2), an insignificant difference between the 

two cells. We also considered the possibility that αsyn might directly alter the PKCδ mRNA 

instability. To address this possibility, we measured PKCδ mRNA half-life by treating cells 

with the transcription inhibitor ActD for 0-12 h, and quantified PKCδ mRNA by qRT-PCR 

(Fig. 4B). The relative half-life of PKCδ mRNA was about 2 h in vector control cells, and the 

decay continued thereafter. Notably, overexpression of αsyn did not change the relative 

half-life of PKCδ mRNA (Supplemental Table 3). Taken together, these results demonstrate 

that αsyn-induced suppression of PKCδ is not due to altered rate of PKCδ protein or mRNA 

decay, suggesting that there are no post-transcriptional effects of αsyn on PKCδ expression. 
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 We therefore turned our attention to transcriptional steps that could mediate the 

reduction in PKCδ via αsyn. We first examined whether αsyn caused a decrease in the PKCδ 

promoter activity. For this, a 1.7 kb (-1700/+22, relative to the transcription start site) region 

of the rat PKCδ promoter was amplified and cloned into the pGL3-Basic reporter vector. The 

promoter activity was then studied by transfecting αsyn-expressing and vector control N27 

cells with the reporter construct pGL3-PKCδ carrying PKCδ promoter. As shown in Fig. 4C, 

compared with vector control cells, αsyn resulted in a significant decrease (p<0.001) in 

luciferase activity, suggesting that αsyn-induced suppression of PKCδ is most likely 

mediated at the level of transcription.  

 Next, we employed a nuclear run-on assay to investigate the effects of αsyn on PKCδ 

transcriptional rate. In this assay, nuclei were isolated from either αsyn-expressing or vector 

control N27 cells and used with the reaction containing biotin-16-UTP. We also prepared 

nuclei from vector control cells and incubated without biotin-16-UTP as a negative control 

for the run-on reaction. After the transcriptional reaction, total nuclear RNA was extracted, 

and then biotinylated RNA was isolated using Streptavidin magnetic beads. qRT-PCR 

analysis was conducted with the biotinylated RNA and total nuclear RNA pools. Fig. 4D 

shows the representative amplification plots for PKCδ mRNA (left panel) and β-actin mRNA 

(right panel). The amount of biotinylated PKCδ mRNA generated in nuclei from 

αsyn-expressing cells was lower than that obtained from vector control cells, but β-actin 

mRNA levels were nearly identical, indicating that αsyn specifically inhibits the PKCδ 

transcriptional rate. Quantitative analysis showed a significant reduction (p<0.001) in the 

PKCδ transcription efficiency in αsyn-expressing cells (Fig. 4E). Collectively, the results of 
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the run-on experiment, combined with the promoter reporter analysis, strongly suggest the 

involvement of a transcriptional repression mechanism in the regulation of PKCδ expression. 

In addition, we also explored the possibility that epigenetic mechanisms such as DNA 

methylation (Supplemental Fig.5A) may be responsible for the α-syn-induced reduction in 

PKCδ. Examination of the methylation status of the rat PKCδ promoter by MSP analysis 

(Supplemental Fig. 5B) revealed an identical methylation pattern in α-syn-expressing and 

vector cells, suggesting that the hypermethylation mechanism is less likely to be involved in 

the repression of PKCδ.  

 

Increased αααα-synuclein expression suppresses PKCδ in part by blocking NFκB activation 

 To further explore the mechanism of αsyn inhibition of the PKCδ promoter activity, 

the rat PKCδ proximal promoter (-178 to +22) was aligned for comparison with the 

homologous sequences from the murine, human, and bovine genome (Supplemental Fig. 6). 

Murine PKCδ and human PKCδ promoters were well conserved from 89% to 71% compared 

with rats, although the same region was less conserved in the bovine PKCδ gene (59%). 

Further analysis revealed six highly conserved transcription factor binding sites (TFBS) in 

the proximal promoter (Supplemental Fig. 6 and supplemental Table 4). Among these 

conserved TFBS, the most notable were two potential NFκB binding sites (Supplemental Fig. 

6), located at positions -20 to -8 (designated as PkcδNFκB1) and -50 to -38 (designated as 

PkcδNFκB2). They are in close proximity, providing an enticing platform for NFκB binding 

and transactivation of the PKCδ gene. Additionally, a previous report indicated that NFκB 

may be involved in mouse PKCδ expression (Suh et al., 2003). Therefore, we carried out 

detailed studies on the role of these two κB sites in the regulation of basal PKCδ expression 
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in N27 cells and also elucidated whether NFκB plays a role in αsyn-mediated 

downregulation of PKCδ expression. To determine if these sites were able to bind NFκB, we 

performed EMSA using PKCδ promoter’s κB site sequence as a probe and nuclear extracts 

from vector cells as a source of NFκB (oligonucleotides sequences used in EMSA are listed 

in supplemental Table 5). As shown in Fig. 5A, in the absence of nuclear extract, the labeled 

probe is detected as free probe migrating at the gel front (lane 1). In contrast, in the presence 

of nuclear extract, an intense shifted band is seen in EMSA using PkcδNFκB1 (left panel) or 

PkcδNFκB2 (right panel) as a probe (Fig. 5A, lane 2). Sequence specificity of the 

DNA-protein complex was shown by competition with excess of selected unlabeled oligos. 

The addition of excess unlabeled self oligos, or NFκB consensus oligos, resulted in the 

ablation of this DNA-protein complex (Fig. 5A, lane 3 and 5). However, an excess of 

unlabeled mutant PkcδNFκB oligos, or unrelated AP1 consensus oligos, did not interrupt the 

binding of nuclear proteins (Fig. 5A, lane 4 and 6). In addition, parallel EMSA using NFκB 

consensus sequence as probe also confirmed that the PKCδ promoter-specific κB sites can 

compete efficiently against the NFκB consensus sequence for binding NFκB (Supplemental 

Fig. 7). Thus, these data clearly demonstrate that the PKCδ promoter has two functional 

NFκB binding sites. 

 To further characterize NFκB binding to the PKCδ promoter, we performed 

supershift assay using PkcδNFκB1 as a probe and nuclear extracts from vector cells. As 

shown in Fig. 5B, in the absence of antibodies, NFκB binding to the PkcδNFκB1 probe was 

again observed (lane 1), and competition with an excess of self oligos was included as an 

internal control (lane 2). In the presence of anti-p65 antibody, the protein-DNA complex was 

interrupted, and a specific supershift band was formed (lane 4). This effect was also observed 
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with the complete ablation of protein-DNA complex and the formation of an intense 

supershift band when we added anti-p65 and anti-p50 together (lane 5). In the presence of 

anti-p50 antibody alone, however, no supershift was formed but the protein-DNA complex 

was significantly reduced (lane 3). The lack of a clear supershift with p50 antibody may be 

due to the interruption of the formation of protein-DNA complex by exposure to a specific 

antibody (Gustin et al., 2004). Normal rabbit IgG antibody displayed no effect on the 

formation of the protein-DNA complex. Thus, our data demonstrated that NFκB is 

constitutively activated in N27 cells, and that the activated NFκB bound to the PKCδ 

promoter comprised of a p50/p65 heterodimer.  

 If αsyn inhibits the PKCδ promoter activity through the NFκB cis-elements at the 

PKCδ promoter, we should see a decrease in the NFκB-DNA complex in αsyn-expressing 

cells. As expected, the nuclear extracts (both 5 µg and 10 µg) from αsyn-expressing cells 

exhibited reduced DNA binding activity to the PkcδNFκB1 probe as compared with vector 

control cells (Fig. 5C). A similar result was obtained when the labeled PkcδNFκB2 probe 

was used (Supplemental Fig. 8). In addition, the binding reaction with cytosolic extracts was 

also performed as an internal control, in which no NFκB-DNA complex formed because 

NFκB is sequestered in the cytoplasm in an inactive form by interaction with IκB 

(Supplemental Fig. 8). Based on these findings, we then carried out a ChIP assay to analyze 

the effect of αsyn on NFκB activation in vivo. As shown in Fig. 5D, αsyn expression 

diminished endogenous binding of both p65 and p50 to the PKCδ promoter. No detectable 

signal was observed in the absence of antibody in the immunoprecipitation process. To 

further confirm the inhibitory effect of αsyn on NFκB transactivation, parallel studies 
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employing RNA interference to down-regulate αsyn were performed. For this study, we 

transfected siRNA-αsyn (si-αsyn) into αsyn-expressing cells and then examined the NFκB 

binding to the PKCδ promoter’s κB element at 72 h post-transfection. EMSA showed that 

NFκB activity was dramatically increased in αsyn knockdown samples (Fig. 5E). The 

efficacy of αsyn-siRNA was evaluated by Western blot (Supplemental Fig. 9), and a 90% 

reduction in the α-syn level was obtained as compared to the negative control siRNA and 

mock transfected control. Finally, we characterized the requirement of NFκB for constitutive 

PKCδ expression in N27 cells. To this end, we utilized NFκB-p65 siRNA to directly inhibit 

the p65 protein. When N27 cells were transfected with siRNA-p65 (si-p65), a ~56% 

reduction in the p65 level was observed, correlating with a concomitant ~35% decrease in the 

PKCδ protein level. However, the negative control siRNA and mock transfection control did 

not show a significant effect on the levels of p65 or PKCδ proteins (Fig. 5F). Collectively, 

these results indicate that NFκB plays an important role in PKCδ transactivation in N27 cells, 

and that αsyn-induced down-regulation of PKCδ expression was mediated, at least in part, by 

reducing the NFκB binding to κB enhancer elements at the PKCδ promoter.  

 To further confirm the functional role of NFκB in the regulation of PKCδ gene 

expression in primary dopaminergic neurons, mouse primary mesencephalic cultures were 

treated with the NFκB inhibitor SN-50, a cell permeable peptide that blocks NFκB nuclear 

translocation (de Erausquin et al., 2003), and PKCδ immunoreactivity of TH-positive 

neurons was analyzed immunocytochemically (Fig. 6). Exposure of primary mesencephalic 

cultures to SN-50 (100 µg/ml) for 24 h induced a significant reduction in PKCδ 

immunoreactivity in TH-positive neurons (Fig. 6A). Analysis of fluorescent intensity with 
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Metamorph Image analysis software revealed a ~70% (p<0.01) decrease in PKCδ 

immunoreactivity in SN-50-treated TH-positive neurons (Fig. 6B). Also, the SN-50 (100 

µg/ml) treated culture showed reduced p65 level in the nucleus, confirming the inhibitory 

effect of SN50 on NFκB activation (data not shown). These results confirm that NFκB is an 

important regulator of PKCδ expression in cultured substantia nigral neurons, and thus, 

further analyses were carried out to examine the mechanism of action of αsyn in inhibiting 

NFκB activity to down-regulate PKCδ expression. 

 

αααα-Synuclein-induced blockade of NFκB activation is associated with decreased 

acetylation of p65, but does not correlate with alteration of nuclear translocation or 

protein levels of NFκB/IκBαααα 

 Our next objective was to explore the molecular basis of inhibition of NFκB activity 

by αsyn. Since αsyn is predominantly located in the cytoplasm (Supplemental Fig. 2), the 

inhibitory effect of αsyn on NFκB activity may be due to its interaction with NFκB in the 

cytoplasm, preventing NFκB localization to the nucleus. However, in our experimental 

conditions, we were unable to detect physical interactions between αsyn and NFκB subunits 

or IκBα by co-immunoprecipitation analysis (data not shown). It may also be possible for 

αsyn to indirectly modulate NFκB activity by enhancing the cytoplasmic retention of 

p50/p65 or altering cellular pools of IκBα. To test this possibility, the subcellular distribution 

of NFκB p50/p65 and IκBα was compared between αsyn-expressing cells and vector control 

N27 cells. Surprisingly, αsyn did not have any effect on p50/p65 NFκB subunits or IκBα in 

both cytoplasmic and nuclear fractions (Fig. 7A). To further determine if reduced 
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NFκB/DNA binding activity by αsyn resulted from alteration of protein levels of NFκB 

subunits and IκBα, we analyzed p65, p50, and IκBα by Western blot. As shown in Fig. 7B, 

the total protein levels of p65, p50, and IκBα were not affected by αsyn either.  

 Studies were then undertaken to determine whether αsyn-mediated downregulation of 

NFκB activity might be related to NFκB/p65 acetylation, a nuclear event associated with 

increased transactivation potential of NFκB and regulated by both p300/CBP HAT and 

HDAC3 (Chen et al., 2001; Chen et al., 2002). In this experiment, whole cell extracts were 

immunoprecipitated with a p65 antibody, and acetylated p65 (Ac-p65) was detected by 

Western blot using an antibody specific for acetylated lysine. Total p65 proteins from 

immunoprecipitates were then re-probed with the p65 antibody. As shown in Fig. 7C, a 

~65kDa acetylated p65 showed no overt differences in acetylated p65, but the total p65 

levels immunoprecipitated from αsyn-expressing cells were significantly higher than that 

from vector control cells, which might be due to the different efficiencies achieved during 

immunoprecipitation steps. Quantification of normalized data (Ac-p65 over total p65) 

revealed a significant (p<0.01) reduction in Ac-p65 in αsyn-expressing cells compared to 

vector control cells (Fig. 7C, right panel). To further confirm the role of p65 acetylation in 

the modulation of PKCδ expression, we employed the HDAC inhibitor sodium butyrate, 

which increased the acetylation of p65 (Duan et al., 2007), possibly by inhibiting HDAC3. 

We previously reported that certain neurotoxic insults induce PKCδ cleavage via a caspase-3 

dependent manner (Kaul et al., 2003; Kaul et al., 2005b). Since we have found that sodium 

butyrate markedly induced caspase-3-dependent cleavage of PKCδ in N27 cells (data not 

shown), a caspase-3-specific inhibitor Z-DEVD-FMK was applied to prevent the sodium 
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butyrate-induced PKCδ cleavage. After co-treatment with sodium butyrate (1 mM) and 

Z-DEVD-FMK (50 µM) in αsyn-expressing cells, as expected, total cellular acetylation was 

significantly enhanced. In particular, two most prominent bands were observed at 15 kD and 

10 kD, respectively (Fig. 7D, right panel). In correlation with this finding, sodium butyrate 

treatment resulted in a time-dependent increase in PKCδ protein levels, whereas it had no 

such effect on the levels of other PKC isoforms (α, βI, ζ), suggesting that increased cellular 

acetylation can isoform-specifically up-regulate PKCδ (Fig. 7D, left panel). Taken together, 

these results suggest that αsyn inhibition of NFκB binding to the PKCδ promoter is 

associated with decreased acetylation of p65, without alteration of NFκB nuclear 

translocation, IκBα degradation, or NFκB/IκBα protein levels.  

 

αααα-Synuclein down-regulates p300 proteins, resulting in decreased p300 HAT activity 

and inhibition of p300-dependent transactivation of PKCδ expression 

 Because the acetylation of p65 by HATs p300/CBP plays a crucial role in NFκB 

activation, we hypothesized that p300/CBP may be a target for αsyn to inhibit p65 

acetylation. First, to determine what effect, if any, αsyn would exert on these proteins, we 

measured levels of p300 and CBP by Western blot. As illustrated in Fig. 8A, the amount of 

nuclear p300 was strikingly reduced (60%) in αsyn-expressing cells, whereas CBP was 

unaltered, suggesting a selective decrease in p300 proteins by αsyn. Neither p300 nor CBP 

can be detected in cytoplasmic fractions as they are predominantly nuclear proteins. To 

further examine whether the decrease in p300 proteins was at the mRNA level, the p300 

mRNA was measured by qRT-PCR analysis. However, p300 transcript levels (Supplemental 
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Fig. 10) were unaffected by αsyn, suggesting that other mechanisms, such as protein 

degradation, may be required for the decrease in p300 proteins. Next, we assessed the effect 

of reduced p300 on its HAT activity. In this experiment, p300 HAT activity was determined 

using an in vitro acetylation of the core histone with endogenous p300 proteins 

immunoprecipitated from αsyn-expressing and vector control cells. As shown in Fig. 8B, 

p300 HAT activity decreased by ~70% in αsyn-expressing cells as compared to vector cells, 

suggesting that the balance between HAT and HDAC activities in αsyn-expressing N27 cells 

was altered by αsyn. The reduction in p300 HAT activity by αsyn therefore appears to be at 

least in part a consequence of the depletion of p300 protein in αsyn-expressing cells. In 

addition to their intrinsic acetyltransferase activity, p300 and CBP are well-known for their 

roles in bridging multiple sequence-specific transcription factors to general transcriptional 

machinery to initiate transcription (Chan and La Thangue, 2001). Based on this 

understanding and our observation of decreased levels of p300 induced by αsyn, we were 

interested in determining whether αsyn could modulate p300 transactivation potential by 

disrupting p300 recruitment to the PKCδ promoter. To address this issue, we evaluated p300 

binding to the PKCδ promoter by ChIP assay. Chromatin was immunoprecipitated with a 

p300 antibody and analyzed by PCR amplification of the PKCδ promoter region 

encompassing the κB binding sites. As shown in Fig. 8C, a small amount of p300 binding 

onto the PKCδ promoter was detected in vector control cells, whereas in αsyn-expressing 

cells, it was completely abolished (lane 4 versus 5). This effect was specific to p300, as 

binding and recruitment of CBP to the PKCδ promoter was not affected by αsyn (Fig. 8C, 

lane 2 versus 3). While these experiments demonstrated that αsyn blocked p300 association 
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to the PKCδ promoter, they do not clarify a functional link between loss of p300 and αsyn 

repression of PKCδ. Therefore, we decided to utilize siRNA-p300 to directly inhibit 

endogenous p300 function. As shown in Fig. 8D, the transfection of siRNA-p300 (si-p300) 

into N27 cells resulted in a ~50% reduction in p300 protein, which was correlated with a 

concomitant ~50% decrease in the PKCδ protein level. Collectively, these results provide 

direct evidence for a specific loss of p300 protein and a subsequent decrease in HAT activity 

due to stable expression of αsyn, which could account for decreased p65 acetylation and 

binding activity, as well as down-regulation of recruitment and binding of p300 to the PKCδ 

promoter, which is at least partly responsible for the reduction in PKCδ expression.  

 We further examined the role of p300 HAT in controlling PKCδ expression in 

primary dopaminergic neurons using the pharmacological modulators of p300. Garcinol, a 

polyisoprenylated benzophenone derivative isolated from Garcinia indica, has been shown to 

potently inhibit the activity of p300 and PCAF (Balasubramanyam et al., 2004; Arif et al., 

2009). In contrast, CTPB, an anacardic acid-inspired benzamide, has been reported to 

function as an activator of p300, but not of PCAF (Souto et al., 2010; Balasubramanyam et 

al., 2003; Mantelingu et al., 2007). We treated mouse primary mesencephalic cultures with 

either garcinol (5 µM) or CTPB (10 µM), and then PKCδ immunoreactivity of TH-positive 

neurons was determined. As shown in Fig. 9A, immunocytochemical staining revealed that 

the level of PKCδ immunoreactivity in TH neurons was dramatically reduced by garcinol 

exposure, and in contrast, CTPB treatment significantly enhanced PKCδ 

immunofluorescence. Fluorescent intensity analysis revealed a ~60% (p<0.01) decrease and 

~170% (p<0.05) increase in PKCδ immunoreactivity in garcinol-treated and CTPB-treated 

TH neurons, respectively (Fig. 9B). These results further demonstrated that p300 can regulate 
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the PKCδ expression in primary dopamine neurons. Taken together with the reduced p300 

levels induced by αsyn (Fig. 8), these results suggest that inhibition of p300-mediated 

transcriptional events by αsyn could contribute to the down-regulation of PKCδ. 

 

Down-regulation of p300 in αααα-synuclein transgenic mice 

 Thus far, the in vitro experiments indicated that p300 is likely to be the major target 

molecule of αsyn responsible for the ultimate impingement on the PKCδ transcription. The 

final step in our study was to verify whether αsyn overexpression down-regulates p300 in 

vivo. To accomplish this, we compared double immunohistochemical labeling of p300 levels 

within TH positive neurons in the substantia nigra of αsyn transgenic (htg) mice versus 

control (non-tg) animals. As shown in Fig. 10, p300 (stained in red) is predominantly 

distributed in the nucleus in TH-positive neurons (stained in green). The majority of 

TH-positive neurons in control mice exhibited significant p300 expression as shown by the 

intensive p300 immunoreactivity. In contrast, TH-immunoreactive neurons in αsyn 

transgenic mice showed weak or no immunoreactivity for p300. Taken together with in vitro 

results, these findings in an animal model clearly demonstrate that the suppression of p300 

by αsyn contributes to the down-regulation of PKCδ.  

 

Discussion 

 

 In the present study, we provide evidence that the normal level of human wild-type 

αsyn is able to attenuate the MPP+-induced dopaminergic degeneration by inhibiting the 
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proapoptotic PKCδ gene expression. To our knowledge, this is the first evidence that αsyn is 

implicated in modulation of PKCδ expression via p300. Stable expression of human 

wild-type αsyn in N27 dopaminergic cells greatly attenuates the MPP+-induced proteolytic 

cleavage and nuclear translocation of the PKCδ catalytic fragment, leading to a 

neuroprotective effect. Conversely, restoring PKCδ expression significantly ablates such 

neuroprotective function. Additionally, we observed that NFκB and p300 are actively 

involved in the modulation of PKCδ gene expression in primary dopaminergic neurons. 

NFκB/p300 inhibition remarkably reduces the extent of PKCδ expression in primary 

dopaminergic neurons, whereas activation of p300 induces a significantly increased level of 

PKCδ. Furthermore, we show a dramatically decreased expression of both PKCδ and p300 

proteins in dopaminergic neurons in αsyn transgenic mice. In addition, we systematically 

characterized the mechanism by which αsyn represses PKCδ gene expression. We 

demonstrated that αsyn does not interfere with PKCδ protein and mRNA turnover but acts 

via direct transcriptional repression. Moreover, we provide evidence linking acetylation 

events to PKCδ repression mediated by αsyn. First, αsyn inhibits NFκB acetylation, leading 

to a reduced NFκB transcriptional activity. Second, αsyn disrupts p300 HAT activity. 

Finally, we show that increasing the cellular acetylation by HDAC inhibitor treatment 

increases PKCδ expression in an isoform-dependent manner. Collectively, our results support 

a working model in which αsyn acts to inhibit p300 levels and its HAT activity to repress 

PKCδ expression and thereby protect against neurotoxicity. These findings might provide 

mechanistic insights into the physiological role of αsyn in regulating neuronal cell death by 

suppressing the proapoptotic kinase PKCδ expression. Our proposed model based on the 
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experimental results is illustrated in Scheme 1, in which the inhibition of PKCδ transcription 

by cytoplasmic αsyn to prevent cell death occurs by disrupting both NFκB and p300 

activation, at least as a consequence of the reduced p300 proteins and subsequent decrease in 

HAT activity.  

 αSyn is highly abundant in presynaptic terminals of mammalian brain, making up to 

0.1% of total brain proteins (Iwai et al., 1995; Sidhu et al., 2004). Although αsyn may have 

various roles in dopamine synthesis and homeostasis (Perez et al., 2002; Peng et al., 2005b), 

membrane trafficking (Outeiro and Lindquist, 2003; Cooper et al., 2006), synaptic plasticity 

(Clayton and George, 1998; Stephan et al., 2002), and as antioxidant or molecular chaperone 

(Ostrerova et al., 1999; Zhu et al., 2006), its physiological role is still unclear. Mutations in 

αsyn gene promote aggregation of αsyn proteins and are linked to PD (Norris et al., 2004). 

Furthermore, transgenic overexpression of mutant αsyn (A53T) in mice produces 

neurodegeneration (Giasson et al., 2002; Lee et al., 2002). However, controversy remains 

about the toxicological properties of wild-type αsyn. Several lines of wild-type αsyn 

transgenic mice fail to show pathological phenotype (Matsuoka et al., 2001; Rathke-Hartlieb 

et al., 2001). Furthermore, growing evidence suggests a neuroprotective role for wild-type 

αsyn. For example, wild-type αsyn, but not its mutant proteins, protects dopaminergic 

neurons against MPP+ or rotenone toxicity (Jensen et al., 2003). Transgenic mice 

overexpressing either the wild-type or the A53T mutant αsyn are resistant to 

paraquat-induced dopaminergic cell death (Manning-Bog et al., 2003). The transgenic model 

used in the current study that overexpresses wild-type human αsyn exerts neuroprotection 

against CSPα-induced neurodegeneration (Chandra et al., 2005). Several hypotheses may 
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explain αsyn-mediated neuroprotection. It is conceivable that αsyn plays a dual role in the 

nervous system. When expressed at physiological levels, it may function as a normal protein 

that contributes to cell survival. In contrast, αsyn overexpressed beyond a certain threshold 

might induce cytotoxicity. A previous study showed that at nanomolar concentrations, αsyn 

prevented cell death, whereas at both low micromolar and overexpressed levels, αsyn 

became neurotoxic (Seo et al., 2002). Since the levels of αsyn achieved in our stable N27 

cells are within physiological range (Fig. 1A), our results support protective functions of this 

protein. In addition to the extent of αsyn expression, an alternative possibility is that 

dysregulation of subcellular αsyn may contribute to PD. αSyn exists either in a 

membrane-bound state that peripherally attaches to vesicles, or in a soluble form that is 

freely diffusible in the cytoplasm. The translocation between these two subcellular 

compartments is crucial for the normal function of αsyn (Bennett, 2005; Wislet-Gendebien et 

al., 2006). Although αsyn was initially recognized as a cytoplasmic protein (Iwai et al., 

1995), several lines of evidence have also documented localization of αsyn in the nucleus 

(Goers et al., 2003; Zhang et al., 2008). Interestingly, a previous study indicated that nuclear 

αsyn promoted neurotoxicity, and conversely, cytoplasmic localization of αsyn was 

neuroprotective (Kontopoulos et al., 2006). In the present study, the cytoplasmic localization 

of αsyn that prevented MPP+-induced cell death partially confirmed this finding (Fig. 2). 

Additionally, αsyn has been shown to function as a negative mediator of DA synthesis via 

interactions with TH and/or PP2A to inhibit TH activity (Perez et al., 2002; Peng et al., 

2005b). We also reported that PKCδ negatively regulates TH activity by binding and 

phosphorylating PP2A (Zhang et al., 2007c). In the present study, we demonstrated that αsyn 
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represses PKCδ transcription, suggesting that αsyn-mediated repression of PKCδ may alter 

DA synthesis. Importantly, we found a reduced PKCδ expression in αsyn transgenic mouse 

models, indicating the αsyn overexpression represses the proapoptotic kinase PKCδ in vivo. 

These results may explain why αsyn overexpressing mice are resistant to neurodegeneration 

in dopaminergic neurons despite the high accumulation of the protein in the substantia nigra.  

 Although our results indicate that p300 pathway is likely the major pathway 

controlling the down-regulation of PKCδ in transgenic animal, it is possible that other PKCδ 

downregulation mechanisms come into play, acting alone or in concert, since overexpression 

of αsyn was found to significantly alter multiple signaling pathways, including stress 

response, transcription factors, apoptosis-inducing molecules, and membrane-bound proteins 

(Baptista et al., 2003). Moreover, αsyn has been shown to be able to directly associate with 

histones and inhibit histone acetylation, suggesting a direct role of the protein in regulation of 

gene transcription (Goers et al., 2003; Kontopoulos et al., 2006). 

 We report here for the first time the repression of the PKCδ gene by αsyn in 

dopaminergic neurons mediated through the transcription factors NFκB and p300. Our results 

show that αsyn inhibits NFκB transcriptional activity at the level of p65 acetylation, without 

affecting NFκB/IκBα nuclear translocation, IκBα degradation, or NFκB/IκBα protein levels. 

It should be noted, however, that acetylation of p65 to mediate NFκB transcriptional activity 

may be more complex, as acetylation of discrete lysine sites may regulate different nuclear 

functions (Chen et al., 2002). Independent of regulation of p65 acetylation levels, modulation 

of p300/CBP-mediated acetylation of p50 has to be considered as one mechanism for the 

inhibition of p50 binding activity (Fig. 5D) by αsyn, because acetylation of p50 increases its 
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DNA binding and further induces NFκB transcriptional activity (Deng et al., 2003). 

Moreover, analysis of the PKCδ promoter has uncovered multiple potential transcription 

factor sites. Therefore, it is also possible that one or more of those factors may contribute to 

the attenuation of PKCδ expression by αsyn.  

 An important finding of this study is that αsyn specifically decreases p300 protein in 

vivo and in vitro. Our model introduces loss of p300 as an underlying mechanism of its 

reduced HAT activity. p300 appears to play at least two major roles in αsyn-mediated 

suppression of PKCδ. First, loss of p300 proteins and its corresponding HAT activity reduces 

p65 acetylation and binding activity to PKCδ promoter, thereby resulting in downregulation 

of PKCδ. Second, PKCδ gene expression itself may be dependent on p300. Thus, the 

depletion of p300 proteins would decrease the recruitment and binding of p300 onto PKCδ 

promoter, and subsequently may interfere with the interactions between p300 and NFκB or 

other transcriptional complexes, eventually blocking PKCδ transcription. However, the 

mechanism by which αsyn disrupts the p300 protein is unclear. Our data indicate that αsyn 

does not likely regulate p300 protein level at the transcriptional level (Supplemental Fig. 10). 

Further investigation should reveal whether αsyn inhibits p300 protein by an alternative 

mechanism, such as degradation mediated by proteasome as reported previously (Poizat et 

al., 2005).  

 It is important to note that regulation of acetylation of p65 could not be limited to the 

acetyltransferase activities of p300 and CBP because deacetylation reactions can also 

influence the overall acetylation status of NFκB. In fact, it has been reported that p65 is 

reversibly acetylated by p300 and CBP and subsequently deacetylated by HDACs, most 

notably, HDAC3 (Kiernan et al., 2003). Therefore, the contribution of HDACs to the 
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inhibition of p65 acetylation by αsyn remains to be elucidated. In addition to acetylation, p65 

is also regulated by the modification of phosphorylation, which can potentiate the 

transcription by enhancing p65 association with the p300/CBP coactivator (Zhong et al., 

2002). The influence of αsyn on NFκB transactivation by alteration of p65 phosphorylation 

status is yet to be determined.   

 In summary, our results are based on multiple independent techniques that together 

elucidate the molecular and cellular mechanisms underlying the down-regulation of PKCδ by 

αsyn. These findings expand the role of αsyn in neuroprotection and have important 

implications for the development of novel drug therapies for PD. 
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Figure 1: αααα-Synuclein specifically down-regulates PKCδ isoform in N27 dopaminergic 

cells 

A, Whole cell extracts from stably expressing αsyn N27 cells (Syn), vector control N27 cells 

(Vec), and rat substantia nigra brain (rSN) were prepared. Expression of αsyn and TH were 

determined by immunoblotting assay with antibodies against αsyn (Syn-1, BD Biosciences) 

and TH. β-actin was used as a loading control. B, The specific downregulation of PKCδ 

protein in αsyn-expressing N27 cells. Representative immunoblots (left panel) and 

quantitation (right panel) of PKC isoforms (δ, α, βI, and ζ) in whole cell lysates in 

αsyn-expressing (Syn) and vector control (Vec) N27 cells. Data shown are mean ± SEM 

from three separate experiments (***p<0.001). C, Left: semiquantitative RT-PCR analysis of 

mRNA levels of various PKC isoforms. Amplicon base pairs (bp) are shown at the right sides 

of the panel. GAPDH was used as loading control. Right: qRT-PCR analysis for PKCδ 

mRNA expression in αsyn-expressing and vector control N27 cells. Data shown represent 

mean ± SEM from four separate experiments preformed in triplicate (***p<0.001). D, 

Transient overexpression of human wild-type αsyn in N27 cells by lentiviral infection 

down-regulates PKCδ protein expression. N27 cells were infected with lentiviruses 

expressing LacZ-V5 (control lentiviral vector) or αsyn-V5 for 48 h, and whole cell lysates 

were analyzed for V5 and β-actin (top panel), PKCδ (middle panel), and αsyn (bottom 

panel). A representative immunoblot is shown. 
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Figure 2: Deregulation of PKCδ by αααα-synuclein protects against MPP+-induced cell 

death in dopaminergic N27 cells 

A, Effects of downregulation of PKCδ by αsyn on MPP+-induced cell death in dopaminergic 

N27 cells. αSyn-expressing (Syn) and vector control (Vec) N27 cells were infected with 

lentiviruses expressing LacZ-V5 or PKCδ-V5 for 24 h. The cells were then exposed to MPP+ 

(300µM) for 48 h. Cells were collected and assayed for DNA fragmentation (left panel) and 

caspase-3 activity (right panel). Data shown represent mean ± SEM from two independent 

experiments performed in quadruplicate (*p<0.05; **p<0.01; and ***p<0.001). B, 

MPP+-induced PKCδ proteolytic cleavage and its nuclear translocation were significantly 

diminished in αsyn-expressing N27 cells. αSyn-expressing (Syn) and vector control (Vec) 

N27 cells were exposed to MPP+ (300 µM) for 36 h. Cytoplasmic (C) and nuclear (N) 

fractions were prepared for immunoblotting analysis of PKCδ. LDH (cytoplasmic fraction) 

and Lamin B1 (nuclear fraction) were used as loading controls. C, Cytoplasmic localization 

of αsyn in αsyn-expressing N27 cells was not affected by MPP+ treatment. αSyn-expressing 

(Syn) and vector control (Vec) N27 cells were exposed to MPP+ (300 µM) for 36 h. Cells 

were either collected for preparation of cytoplasmic and nuclear extracts and immunoblotting 

analysis of αsyn (left panel) or stained and visualized under a Nikon TE2000 fluorescence 

microscope (right panel). Scale bar, 10µm. A representative immunoblot and image of αsyn 

immunostaining (green) and Hoechst staining (blue) are shown.
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Figure 3: Decreased PKCδ expression in nigral dopaminergic neurons in αααα-synuclein 

overexpressing mice 

A, Representative images of immunohistochemical analysis of PKCδ expression within 

nigral TH-positive neurons. Substantia nigra sections from non-transgenic control (non-tg) 

mice and αsyn transgenic mice (htg) were stained with PKCδ polyclonal antibody (1:250 

dilution) and TH monoclonal antibody (1:1800 dilution), followed by incubation with Alexa 

568-conjugated (red; 1:1000) and Alexa 488-conjuated (green; 1:1000) secondary antibodies. 

Hoechst 33342 (10 µg/ml) was added to stain the nucleus. Confocal images were obtained 

using a Leica SP5 X confocal microscope system. Green, TH; red, PKCδ; blue, nucleus. 

White arrows point to dopaminergic neurons with significant PKCδ staining. Scale bar, 

25µm (left panel) and 7.5µm (right panel). Magnifications 63x (left panel) and 430x (right 

panel). B, Quantification of the number of TH neurons containing colocalized PKCδ 

immunoreactivity was determined by blindly counting 6 fields and averaging. Values 

expressed as percent of total TH neurons were mean ± SEM and representative for results 

obtained with three pairs of 6-8-week-old mice (***p<0.001). C, To analyze the levels of 

αsyn in substantial nigra homogenates from transgenic mice overexpressing human 

wild-type αsyn and non-transgenic mice, substantial nigra homogenates were prepared from 

transgenic mice (htg) and non-transgenic mice (non-tg) and subjected to immunoblotting 

analysis of αsyn, and β-actin. Representative immunoblot (left panel) and quantitation (right 

panel) of αsyn expression were shown. About 6-fold increase in αsyn expression in 

substantial nigra was found in transgenic mice. Data were shown as mean ± SEM; n=6 

(*** p<0.001). 
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Figure 4: αααα-Synuclein suppresses PKCδ transcription without affecting PKC δ protein 

or mRNA stability in N27 dopaminergic cells 

A, Left: Pulse-chase analysis of stability of PKCδ protein. αSyn-expressing and vector 

control N27 cells were labeled with 35S-methionine, and PKCδ protein was analyzed over 48 

h as described in Materials and Methods. Right: The bands were quantified and expressed as 

percentage of amount present at time 0 h. The data plotted were fit to a one-phase 

exponential decay model using the nonlinear regression analysis program of Prism 4.0 

software as follows: Y = Span e-Kt + Plateau, where Y starts at Span + Plateau and decays 

with a rate constant K. The half-life of the protein was determined by 0.693/K. The square of 

the correlation coefficient (R2) is used as a measure of goodness-of-fit in regression analysis. 

The results of degradation kinetics of PKCδ protein are shown in supplemental Table 2. 

Values are mean ± SEM of two independent experiments. B, The stability of PKCδ mRNA 

was not decreased in αsyn-expressing N27 cells. After treatment with actinomycin D (ActD), 

total RNA was extracted for qRT-PCR analysis at selected time intervals. The relative 

abundance of PKCδ mRNA was expressed as a percentage of that present at time 0 h, and 

data plotted were fit to the one-phase exponential decay model. The results of degradation 

kinetics of PKCδ mRNA are shown in supplemental Table 3. Values are mean ± SEM of 

three independent experiments performed in triplicate. C, The PKCδ promoter activation was 

attenuated in αsyn-expressing cells in reporter assays. Reporter pGL3-PKCδ carrying the 

PKCδ promoter or pGL3-Basic empty vector was transiently transfected into 

αsyn-expressing and vector control cells. Cells were collected 24 h post-transfection and 

assayed for luciferase activity and β-galactosidase activity. Data were normalized and 

expressed as fold-induction over the pGL3-Basic vector. Values are shown as mean ± SEM 
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of three independent experiments performed in triplicate (***p<0.001). D, The relative 

transcription efficiency of PKCδ was examined by quantitative nuclear run-on assay. 

Representative amplification plots for PKCδ mRNA (left panel) and β-actin mRNA (right 

panel) are shown. The change in fluorescence intensity (∆Rn) was plotted on the Y axis. The 

arrow shows the threshold (dashed lines). E, Quantitation of transcription efficiency. Data 

are expressed as fold-change in the level of nascent run-on PKCδ mRNA in vector control 

cells, and are shown as mean ± SEM of three independent experiments performed in 

triplicate (*** p<0.001). 
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Figure  5: Increased αααα-Synuclein expression suppresses PKCδ in part by blocking 

NFκB activation 

A, Representative EMSA gel images show the direct binding of NFκB to the putative PKCδ 

NFκB sites. Competitive EMSA was conducted using labeled probe corresponding to the 

PKCδ NFκB site 1 (left panel) or the PKCδ NFκB site 2 (right panel) and indicated unlabeled 

oligos. B, Binding p50 and p65 to the NFκB sites on the PKCδ promoter. The nuclear 

extracts from vector control cells were incubated with excess of unlabeled self oligos or 

indicated antibodies prior to adding the labeled probe (PKCδ NFκB site 1). A representative 

EMSA supershift gel from three independent experiments is shown. C, A representative 

EMSA gel image indicates the reduced binding of NFκB in vitro to the PKCδ NFκB site 1 in 

αsyn-expressing N27 cells. D, ChIP analysis of the in vivo binding of NFκB-p65 and p50 on 

the PKCδ promoter. After reversal of cross-linking, immunoprecipitated genomic DNA 

fragments were analyzed by PCR using primers designed to amplify the -103 to +60 region 

of PKCδ promoter. E, Knockdown of αsyn protein increased NFκB activity. 

αSyn-expressing cells were transient transfected with siRNA-αsyn and scrambled siRNA. 72 

h post-transfection, the cells were collected and subjected to EMSA analysis using the 

labeled probe corresponding to the PKCδ NFκB site 1. Mock transfection was also included 

as a negative control. F, Transfection of NFκB-p65 siRNA down-regulated PKCδ expression 

in N27 cells. N27 cells were transfected with p65-siRNA and scrambled siRNA for 96 h, and 

cells were collected for Western blot analysis. Representative immunoblot (left panel) and 

quantitation (right panel) of p65 and PKCδ on whole cell lysates in transfected cells. Data are 

shown as mean ± SEM of two independent experiments (*p<0.05, **p<0.01). 
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Figure 6: Effect of NFκB inhibition on the PKCδ immunoreactivity in the primary 

dopaminergic neurons 

A, Primary midbrain cultures were treated with or without 100 µg/ml of SN-50 for 24 h. 

Cultures were immunostained for TH (green) and PKCδ (red). The nuclei were 

counterstained by Hoechst 33342 (blue). Images were obtained using a Nikon TE2000 

fluorescence microscope (magnification 60x). Scale bar, 10µm. Representative 

immunofluorescence images are shown. The insert shows a higher magnification of the cell 

body area. B, Immunofluorescence quantification of PKCδ in TH-positive neurons. 

Fluorescence immunoreactivity of PKCδ was measured from TH-neurons in each group 

using Metamorph software. Values expressed as percent of control group are mean ± SEM 

and representative for results obtained from three separate experiments in triplicate 

(**p<0.01).  
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Figure 7: αααα-Synuclein-induced blockade of NFκB activation is associated with 

decreased acetylation of p65, but does not correlate with nuclear translocation or 

protein levels of NFκB/IκBαααα 

A, B, Nuclear translocation and abundance of NFκB/IκBα were not altered by 

overexpression of αsyn. Representative immunoblot of p65, p50 and IκBα levels on 

cytoplasmic and nuclear extracts (A) or whole cell lysates (B) from αsyn (Syn) and vector 

control (Vec) cells. C, The p65 acetylation levels were reduced in αsyn cells. Whole cell 

lysates was immunoprecipitated (IP) with p65 antibody. The resulting immunoprecipitates 

were blotted with anti-acetyl-lysine and anti-p65 antibodies. Densitometric quantitation of 

the ratio of band intensity of acetylated p65 and total p65 from two independent experiments 

(means ± SEM; **p<0.01) is shown on the right. D, Sodium butyrate (NaBu) specifically 

enhanced PKCδ isoform expression in αsyn-expressing N27 cells. αSyn-expressing cells 

were treated with 1 mM NaBu and 50 µM caspase-3 inhibitor Z-DEVD-FMK, and cell 

lysates were prepared for blotting with specific anti-PKC isoforms (left panel) and 

anti-acetyl-lysine (right panel) antibodies. 
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Figure 8: αααα-Synuclein down-regulates p300 proteins, resulting in decreased p300 HAT 

activity and inhibition of p300-dependent transactivation of PKCδ gene expression 

A, Decreased p300 protein levels in αsyn-expressing cells. Representative immunoblot (left 

panel) and quantitation (right panel) of p300 and CBP on cytoplasmic and nuclear extracts 

from αsyn-expressing (Syn) and vector control (Vec) cells. Data are shown as mean ± SEM 

of two independent experiments (**p<0.01). LDH (cytoplasmic fraction) or histone H3 

(nuclear fraction) was used as loading control. B, Decreased p300 HAT activity in 

αsyn-expressing cells. Data were subtracted from background values that were measured in 

samples containing normal IgG, and then expressed as the percentage of HAT activity 

present in vector control cells. Values are shown as mean ± SEM of three independent 

experiments performed in triplicate (***p<0.001). C, The in vivo binding of p300 on the 

PKCδ promoter was interrupted by overexpression of αsyn. After reversal of cross-linking, 

p300-immunoprecipitated genomic DNA fragments were analyzed by PCR using primers 

designed to amplify the -103 to +60 region of PKCδ promoter. D, Knockdown of p300 by 

siRNA-p300 decreased PKCδ levels in N27 cells. N27 cells were transfected with 

p300-siRNA and scrambled siRNA for 96 h, and cells were collected for Western blot 

analysis. Representative immunoblot (left panel) and quantitation (right panel) of p300 and 

PKCδ on nuclear extracts or whole cell lysates in transfected cells. Data are shown as mean ± 

SEM of two independent experiments (*p<0.05, ***p<0.001).  
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Figure 9: Effect of p300 inhibition or activation on the PKCδ immunoreactivity in the 

primary dopaminergic neurons 

A, Primary midbrain cultures at 7 DIV were treated with or without either 5 µM garcinol or 

10 µM CTPB for 24 h. Cultures were immunostained for TH (green) and PKCδ (red). The 

nuclei were counterstained by Hoechst 33342 (blue). Images were obtained using a Nikon 

TE2000 fluorescence microscope (magnification 60x). Scale bar, 10µm. Representative 

immunofluorescence images are shown. The insert shows a higher magnification of the cell 

body area. B, Immunofluorescence quantification of PKCδ in TH-positive neurons. 

Fluorescence immunoreactivity of PKCδ was measured from TH-neurons in each group 

using Metamorph software. Values expressed as percent of control group are mean ± SEM 

and representative for results obtained from three separate experiments in triplicate (*p<0.05, 

**p<0.01). 
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Figure 10: Decreased p300 level within neurons of the substantia nigra in ααααsyn 

overexpressing mice 

Representative images of immunohistochemical analysis of p300 expression within nigral 

TH-positive neurons. Substantia nigra sections from non-transgenic control (non-tg) mice 

and αsyn transgenic mice (htg) were stained with p300 polyclonal antibody (1:350 dilution) 

and TH monoclonal antibody (1:1800 dilution), followed by incubation with Alexa 

568-conjugated (red; 1:1000) and Alexa 488-conjuated (green; 1:1000) secondary antibodies. 

Hoechst 33342 (10 µg/ml) was added to stain the nucleus. Confocal images were obtained 

using a Leica SP5 X confocal microscope system. White arrows point to dopaminergic 

neurons with significant nuclear p300 staining. Green, TH; red, p300; blue, nucleus. Scale 

bar, 25µm (left panel) and 7.5µm (right panel). Magnifications 63x (left panel) and 250x 

(right panel).
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Scheme 1: A proposed model for αααα-synuclein acting in the cytoplasm to repress PKCδ 

expression and attenuate dopaminergic neurotoxicity 

Constitutively activated NFκB p50/p65 heterodimers and p300/CBP bind to the two proximal 

promoter κB sites and modulate PKCδ transcription. Expression of αsyn, a cytoplasmic 

protein, inhibits p300-mediated acetylation of p65, thereby blocking the NFκB biding to 

PKCδ promoter. In addition, αsyn reduces p300 protein and its HAT activity, resulting in 

interruption of binding of p300 to the PKCδ promoter and its interaction with general 

transcription machinery (GTM), causing inhibition of PKCδ transcription. The resulting loss 

of PKCδ expression confers protection due to reduced proteolytic activation of PKCδ, which 

is a key proapoptotic function of the kinase during neurotoxic insults.
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Supplemental Figure 1: Analysis of the relationship between αααα-synuclein and PKCδ 

protein levels in a variety of cell lines 

Left: representative immunoblot analysis of whole cell lysates from the indicated cell lines 

for expression of αsyn, PKCδ or β-actin. Right: densitometric analysis. αSyn and PKCδ 

bands were quantified and normalized to that of β-actin. Values are shown as mean ± SEM 

of two independent experiments.  
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Supplemental Figure 2: αααα-Synuclein was exclusively located in the cytoplasm in 

ααααsyn-expressing N27 cells 

A, Cytoplasmic and nuclear extracts from αsyn-expressing (Syn) and vector control (Vec) 

N27 cells were prepared and subjected to immunoblotting analysis of αsyn. LDH 

(cytoplasmic fraction) and Lamin B1 (nuclear fraction) were used as loading controls. B, 

Stained cells were mounted on slides and visualized under a Nikon TE2000 fluorescence 

microscope. Images were obtained with a SOPT digital camera. A representative image of 

αsyn immunostaining (green) and Hoechst staining (blue) is shown. Staining of 

αsyn-expressing (top panels) and vector control (bottom panels) cells with αsyn reveals 

immnuoreactivity specificity in the cytoplasm but not in the nucleus of αsyn-expressing 

cells. 
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Supplemental Figure 3: Overexpression of PKCδ protein by lentiviral infection 

αSyn-expressing N27 cells were infected with lentiviruses expressing LacZ-V5 (control 

lentiviral vector) or PKCδ-V5 for 48 h, and whole cell lysates were analyzed for V5 (top 

panel), PKCδ (middle panel), and β-actin (bottom panel). A representative immunoblot is 

shown. 
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Supplemental Figure 4: Confirmation of the PKCδ-TH double-staining quantification 

technique 

To confirm the validity of quantification data shown in Fig. 3B, the quantification was also 

determined by blindly counting the number of TH neurons containing colocalized PKCδ 

immunoreactivity per unit of area and averaging. For each experimental condition, at least 6 

randomly chosen visual fields were analyzed. Values (expressed as number of TH-PKCδ 

colocalized neurons per square millimeter) were mean ± SEM and representative for results 

obtained with three pairs of 6-8-week-old mice (***p<0.001).  
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Supplemental Figure 5: αααα-Synuclein does not affect the methylation status of PKCδ 

promoter 

A, Schematic map of the putative promoter-associated CpG island region showing the 

location of MSP primers and the sequence of the region studied by MSP. The CpG 

dinucleotide is shown in red capital letters. B, MSP analysis of methylation status in PKCδ 

promoter. Bisulfite-modified DNA was used for MSP with primers specific for methylated 

(M) and unmethylated (U) DNA. Water blank was used as a negative control.  
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Supplemental Figure 6: Sequence alignment of the proximal PKCδ promoter 

The proximal rat PKCδ promoter sequence (-178 to +22, relative to the transcription start 

site) was aligned with the homologous sequences from the mouse, human, and cow genome 

using a DiAlign professional program. Sequence differences are indicated and gaps 

introduced to maximize homology are marked by dashes. The highly conserved TFBSs are 

labeled, and the NFκB sites are highlighted in red.  
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Supplemental Figure 7: The putative NFκB sites on the PKCδ promoter competed with 

the consensus NFκB probe for NFκB binding 

Competitive EMSA was performed with the labeled consensus NFκB probe and indicated 

unlabeled oligos. A representative EMSA gel image is shown. 
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Supplemental Figure 8: Representative EMSA gel images indicate the reduced binding 

of NFκB in vitro to the PKCδ NFκB site 2 in ααααsyn-expressing N27 cells (Syn) compared 

to the vector control N27 cells (Vec). N.E., nuclear fractions; Cyt., cytoplasmic fractions. 



www.manaraa.com

268 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 9: Efficient knockdown of αααα-synuclein by siRNA-ααααsyn was 

confirmed by Western blot analysis 

Representative immunoblot (left panel) and quantitation (right panel) of αsyn on whole cell 

lysates in transfected cells. Data are shown as mean ± SEM of two independent experiments 

(** p<0.01).  
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Supplemental Figure 10: Increased αααα-synuclein expression in N27 cells does not alter 

the amount of p300 mRNA 

Quantitative analysis of p300 mRNA levels in αsyn-expressing (Syn) and vector control 

(Vec) cells. Data shown represented mean ± SEM of three independent experiments 

performed in triplicate. Note, p300 transcripts were not altered in αsyn-expressing cells 

(p>0.05).  
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  Supplemental Table 1: List of primer sequences used in the study 

Primer Sequence (5’-3’) Amplicon 
PKCδ Fg GTCTATCTCGAGCACTCTCCTGAAGCCCACCATG 1901 
PKCδ Rg GTCTATAAGCTTCACACACAATGGAGCCCAGGAG  
PKCδ Fs GGGCTACGTTTTATGCAGCT 700 
PKCδ Rs AGCAGGTCTGGGAGCTCACT  
PKCα Fs TGAACCCTCAGTGGAATGAGT 325 
PKCα Rs GGCTGCTTCCTGTCTTCTGAA  
PKCε Fs CCACCAAGCAGAAGACCAAC 466 
PKCε Rs TTTGTGGACGACGCAGGTAC  
PKCη Fs GAAGGAGAGTCCATCAAGTC 497 
PKCη Rs TCAGCGTAGACCTGGAAATG  
PKCζ Fs GGGACGAAGTGCTCATCATC 541 
PKCζ Rs GAGGACCTTGGCATAGCTTC  
PKCλ Fs GCAGTGAGGTTCGAGATATG 380 
PKCλ Rs CCAGCAGTTTGCAGTTGATG  
GAPDH Fs CAATGCATCCTGCACCACCAAC 320 
GAPDH Rs CATACTTGGCAGGTTTCTCCAG  
PKCδ Fq TAAGCCCAAAGTGAAATCCC 138 
PKCδ Rq ACAAAGGAGAAGCCCTTGAA  
β-actin Fq ATCGCTGACAGGATGCAGAAG 76 
β-actin Rq TCAGGAGGAGCAATGATCTTGA  
Methylated F CGTAAGTAGTTGGGGAAGTTTC 230 
Methylated R CACGAAAACTAAAAAT CCGAC  
Unmethylated F GGTGTAAGTAGTTGGGGAAGTTTT 233 
Unmethylated R CCACAAAAACTAAAAATCC AAC  
ChIP F ACAAGCCAGCAGGAAGAGGA 163 
ChIP R TTATAGAGGAGGACTCCGAGGC  

F, Forward; R, Reverse; g, genomic PCR for cloning the rat PKCδ promoter; s, semiquantitative RT-PCR; q, quantitative 
RT-PCR.  
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           Supplemental Table 2: Degradation of PKCδ protein in N27 cells 

 

 

 

         

PKCδ protein degradation data were fit to a one-phase exponential decay model using the 

nonlinear regression analysis program of Prism 4.0 software as follows: Y = Span e-Kt + 

Plateau, where Y starts at Span + Plateau and decays with a rate constant K. The half-life of 

the each protein was subsequently determined by 0.693/K. The goodness-of-fit was assessed 

as the square of the correlation coefficient (R2). Values are expressed as mean ± SEM. 

Cells Half-lives (h) K R2 

Vec 14.77 ± 4.54 0.055 ± 0.017 0.971 

Syn 14.07 ± 1.89 0.051 ± 0.007 0.845 
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          Supplemental Table 3: Stability of PKCδ mRNA in N27 cells 

 

 

 

 

 

PKCδ mRNA stability data were fit to a one-phase exponential decay model using the 

nonlinear regression analysis program of Prism 4.0 software as follows: Y = Span e-Kt + 

Plateau, where Y starts at Span + Plateau and decays with a rate constant K. The half-life of 

the each mRNA was subsequently determined by 0.693/K. The goodness-of-fit was assessed 

as the square of the correlation coefficient (R2). Values are expressed as mean ± SEM. 

 

Cells Half-lives (h) K R2 

Vec 1.78 ± 0.17 0.396 ± 0.039 0.734 

Syn 1.72 ± 0.24 0.415 ± 0.058 0.816 



www.manaraa.com

273 

 

Supplemental Table 4: Phylogenetic conserved putative TF-binding sites locating on rat 

PKCδδδδ proximal promoter  

Family/matri TF Position   Strand Nucleotide Sequence Binding Profilea,b,c 
ETSF NERF1a -99 to -79 (+) agccagcaGGAAgaggaatga nnrncaGGAAgnr 
HAND dHand-E12 -68 to -48 (+) ggcaggccagcTGGCcagtgg ccagaTGGCcccccn 
MYOD Myogenin -50 to -66 (-) actggcCAGCtggcctg rnkynmCAGCtgbnsbn 
NEUR Neurogenin 1/ 3 -65 to -53 (+) aggCCAGctggcc svCCATmtgkyn 
NFkB NFkB -38 to -50 (-) ccGGGActcccca GGGAntyycc 
NFkB NFkB -20 to -8 (+) tgGGGAagccccg GGGAntyycc 

a nucleic acid codes used: a-adenine, c-cytosine, g-guanine, t-thymine, r-G or A, y-T or  C, k-G or T, m-A or C,  s-G or C, 
w-A or T, v-A or C or G, b-C or G or T, n-A or G or C or T. 
b Base pairs written in bold indicate they appear in a position where the matrix exhibits a high conservation profile 
(consensus index vector > 60). 
c Base pairs in capital letters denote the core sequence used by MatInspector (Genomatix Software) for predicting 
TF-binding sites.  

 

Using the DiAlign TF program (Genomatix Software), six phylogenetic sequences conserved 

among rat, human, murine, and cow PKCδ promoter were identified. The nucleotide 

distribution matrix information was obtained from MatBase program (Genomatix Software).
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    Supplemental Table 5:  Sense sequences of the oligonucleotides used in EMSAs 

Probe/Competitor                            Sense oligonucleotide (5’-3’) 
PkcδNFkB1                                 GTAGTTGGGGAAGCCCCGCC ( -20 to -8) 

PkcδNFkB1 mutant                        GTAGTTagctAAGCCCCGCC 

PkcδNFkB2                                    GCCAGTGGGGAGTCCCGGGC (-51 to -39) 

PkcδNFkB2 mutant                        GCCAGTagctAGTCCCGGGC 

NFkB consensus                             AGTTGAGGGGACTTTCCCAGGC 

AP-1 CGCTTGATGACTCAGCCGGAA 

 

 

Nucleotide sequences of the consensus binding motif are underlined. The localizations of the 

PKCδ NFκB sites, relative to the transcription start site, are shown. Mutated base pairs in 

mutant oligos are highlighted in bold and in lowercase.  
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CHAPTER V: INCREASED EXPRESSION OF PRO-APOPTOTIC KINASE PKCδ 

FOLLOWING EXPOSURE TO MANGANESE: IMPLICATIONS FOR 

GENE-ENVIRONMENT INTERACTIONS IN NEURODEGENERATION 

 

A paper submitted to Environmental Health Perspectives 

 

Huajun Jin, Arthi Kanthasamy, Danhui Zhang, Vellareddy Anantharam, and Anumantha 

Kanthasamy 

 

Abstract 

 

BACKGROUND/OBJECTIVES:  Exposure to elevated levels of the essential trace element 

manganese cause a neurodegenerative disorder, termed manganism, resulting from 

degeneration of neurons within the basal ganglia. However, the precise mechanisms 

underlying the known pathological effects of manganese remain elusive. Our previous 

studies have shown that proteolytic activation of PKCδ, a member of the novel PKC family, 

plays a key role in manganese-induced neurodegeneration. We are interested in examining 

whether manganese exposure can result in aberrant expression of PKCδ, which may exert 

neurodegenerative effects through the consequent potentiation of the activation of PKCδ.  

METHODS:  As a proof of concept, a mouse model of manganese via oral gavage and 

primary neurons culture, as well as cultured NIE-115 cells was utilized to examine the effects 

of manganese on PKCδ expression. 
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RESULTS: Manganese exposure potently induced PKCδ levels in primary striatal neurons 

and NIE-115 cells. The use of primary neurons from mice lacking PKCδ subsequently 

demonstrated that the level of PKCδ plays a critical role in manganese-induced 

neurodegeneration. Experiments on manganese-exposed mice also confirmed the action of 

manganese in upregulation of PKCδ. Using NIE-115 cells, we further elucidated the 

mechanisms underlying the manganese-induced up-regulation of PKCδ. We identified that 

NFκB is essential for both basal and manganese-mediated expression of PKCδ in NIE-115 

cells. 

CONCLUSIONS: These results demonstrate that the environmental neurotoxicant 

manganese greatly alters the gene expression of PKCδ, a key oxidative-stress sensitive kinase 

involved in multiple modes of neurodegeneration.  

 

Introduction 

 

 Chronic exposure to elevated levels of manganese, an essential trace metal required 

for normal brain function, in human and non-human primates is long known to cause 

manganism, a complex neurodegenerative disorder characterized by symptoms that broadly 

resembles the dystonic movements associated with Parkinson’s disease (PD) (Benedetto et 

al., 2009). In addition to occupational and industrial settings, such as mining, welding, and 

steel manufacturing (Keen et al., 2000), chronic liver diseases and parenteral nutrition are 

also known risk factors for manganese intoxication (Hauser et al., 1994). Manganese 

accumulates at the highest levels in the striatum, globus pallidus, and substantia nigra in 

exposed humans and monkeys (Erikson et al., 2004). Pathological changes include neuronal 
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loss and gliosis within the basal ganglia, principally in globus pallidus and less severe in 

striatum and substantia nigra pars reticulata (Perl and Olanow, 2007; Aschner et al., 2009a). 

Current evidence indicates that manganese induces a variety of cellular alterations, including 

glutathione and dopamine depletion, impairment of iron metabolism and energy metabolism, 

and increased oxidative stress (Dobson et al., 2004; Olanow, 2004b). While the 

understanding of the pathogenic mechanisms underlying manganese neurotoxicity remains 

elusive, a growing number of studies have suggested that apoptosis resulted from oxidative 

stress and mitochondrial dysfunction plays a pivotal role in manganese toxicity (Liu et al., 

2005; Benedetto et al., 2009), Therefore, identification of the molecular targets mediating the 

manganese-induced apoptotic process is essential in understanding the brain pathologies 

associated with manganese.  

 Recently, we discovered that caspase-3-dependent proteolytic activation of 

proapoptotic PKCδ is a key mediator of manganese-induced neurodegeneration, and that 

inhibition of PKCδ by employing pharmacological inhibitors or overexpression catalytically 

inactive PKCδ mutant attenuated the manganese neurotoxicity (Anantharam et al., 2002; 

Latchoumycandane et al., 2005). These results indicate that PKCδ could represent a valid 

pharmacological target for development of a neuroprotective strategy against manganese. In 

the present study, we extend the previous observations by presenting new evidence that 

chronic manganese exposure markedly increases PKCδ gene expression in the striatum of 

animals, in primary striatal neuron cultures, and NIE-115 cells. Furthermore, we 

demonstrated that the potentiation of PKCδ expression is likely through an NFκB signaling 

pathway. Our results provide a new link between the environmental neurotoxin manganese 

and PKCδ gene, which plays a key role in manganese-induced neurodegeneration.  
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Materials and Methods 

 

Reagents 

 Manganese chloride (MnCl2.4H2O) was obtained from Fluka (Milwaukee, WI). 

Poly-D-lysine was purchased from Sigma-Aldrich (St. Louis, MO). Neurobasal medium, 

Neurobasal supplement (B27), Lipofectamine 2000 reagent, hygromycin B, penicillin, 

streptomycin, fetal bovine serum, L-glutamine, and Dulbecco’s modified Eagle’s medium 

were purchased from Invitrogen (Carlsbad, CA). Antibodies to PKCδ, PKCβI, PKCζ, p65, 

and p50 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA); the mouse 

β-actin antibody were purchased from Sigma-Aldrich. IRDye800 conjugated anti-rabbit 

secondary antibody was obtained from Rockland Labs (Gilbertsville, PA). Alexa 

680-conjugated anti-mouse secondary antibody was obtained from Invitrogen.  

 

Animal experiments 

 Six- to eight-week-old C57B1/6 mice and PKCδ knock-out mice were housed in a 

temperature-controlled, 12:12 h light/dark room, and were allowed free access to food and 

water. MnCl2.4H2O was dissolved in sterile saline and administered to C57B1/6 mice by a 

single gavage at a dose of 3 or 10 mg of Mn/kg. An equal volume of saline was given to the 

control animals. To achieve precise doses of manganese, the amount of manganese delivered 

was adjusted for the molecular concentration in the tetrahydrate form. These doses were 

selected based upon previous studies in both human and rodent exhibiting symptoms of 

manganese intoxication (Mergler et al., 1999; Li et al., 2006; Zhang et al., 2009). Mice were 
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sacrificed one month after the onset of manganese administration, and the brain areas of 

interest were immediately and carefully dissected out and stored at -80°C. The PKCδ-/- mice 

previously have been described (Zhang et al., 2007c). Animal care procedures strictly 

followed the NIH Guide for the Care and Use of Laboratory Animals and were approved by 

the Iowa State University IACUC. 

 

Mouse striatal neurons in primary culture and treatment 

 Plates (6-well) were coated overnight with 0.1 mg/ml poly-D-lysine. Striatal tissue 

was dissected from gestational 16- to 18-day-old mice embryos from wild-type (C57B1/6) 

mice or PKCδ knock-out mice (Zhang et al., 2007c), and kept in ice-cold Ca2+-free Hanks’s 

balanced salt solution. Cells were then dissociated in Hank’s balanced salt solution 

containing trypsin-0.25% EDTA for 30 min at 37 °C. After enzyme inhibition with 10% 

heat-inactivated fetal bovine serum in Dulbecco’s modified Eagle’s medium, the cells were 

suspended in Neurobasal medium supplemented with 2% Neurobasal supplement (B27), 500 

µM L-glutamine, 100 IU/ml penicillin, and 100 µg/ml streptomycin, plated at 2 × 106 cells in 

2 ml/well and incubated in a humidified CO2 incubator (5% CO2 and 37 °C). Half of the 

culture medium was replaced every 2 days, and experiments were conducted between 6 and 7 

days cultures. After exposure to doses of MnCl2 ranging from 50 to 150 µM for 24 or 48 h as 

indicated in figures, the primary striatal cultures were collected for later analysis. 

 

Cell lines 

 Mouse neuroblastoma NIE-115 cell line was a kind gift from Dr. Debomoy Lahiri 

(Indiana University School of Medicine, Indianapolis, IN). Mouse dopaminergic MN9D cell 
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line was a kind gift from Dr. Syed Ali (National Center for Toxicological Research/FDA, 

Jefferson, AR). Mouse neuroblastoma N2a and mouse BV2 microglia cell lines were 

obtained from the American Type Culture Collection (ATCC, Rockville, MD). BV2, MN9D, 

NIE-115 and N2a cells were grown in Dulbecco’s modified Eagle’s medium supplemented 

with 10% fetal bovine serum, 2 mM L-glutamine, 50 units penicillin, and 50 units 

streptomycin. 

 

Plasmid constructs 

 The PKCδ promoter/luciferase reporter construct pGL3-1448/+1 containing the 

1.4-kb upstream region of the transcription start site of the mouse PKCδ gene was 

constructed by PCR amplification using pGlow-PKCδ-GFP, obtained from Dr. Sanford 

Sampson (Bar-Ilan University, Ramat-Gan, Israel), as a template as well as the primer sets 

P-1448/P+1 (see supplemental Table 1 for all primers sequences) and subcloned into the 

XhoI/HindIII sites of pGL3-Basic luciferase reporter vector (Promega, Madison, WI). Using 

pGL3-1448/+1 as a template, a series of truncated PKCδ promoter reporter constructs were 

constructed by PCR with appropriate primers indicated in supplemental Table 1 and cloned 

into pGL3-Basic vector similar to the preparation of pGL3-1448/+1. All reporter constructs 

were verified by DNA sequencing. Wild-type NFκB-p65 and NFκB-p50 expression 

constructs and NFκB-p65 deletion construct p65∆C, containing p65 amino acids 1 to 337, 

were obtained from Dr. Vivek Rangnekar (University of Kentucky, Lexington, KY).   
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Site-directed mutagenesis 

 Point mutations of potential transcription elements were introduced into the proximal 

PKCδ promoter reporter plasmid pGL3-147/+1 by using the GeneTailor Site-Directed 

Mutagenesis System (Invitrogen) with overlapping PCR primers indicated in supplemental 

Table 1, according to the manufacturer’s instructions. To generate double mutants, plasmids 

carrying a single mutation were used as a template to further introduce the second mutation. 

The mutated sequences of all mutants were confirmed by DNA sequencing.  

 

Protein isolation and immunoblot analysis 

 Cell lysates or brain homogenates were prepared as previously described (Zhang et al. 

2007). Immunoblotting and densitometric analysis of immunoblots were performed as 

previously described (Kanthasamy et al. 2006). Briefly, the samples containing equal 

amounts of protein were fractionated through a 10% SDS-PAGE and transferred onto a 

nitrocellulose membrane (Bio-Rad, Hercules, CA). Membranes were blotted with the 

appropriate primary antibody and developed with IRDye800 anti-rabbit or Alexa 

680-conjugated anti-mouse secondary antibodies (Invitrogen). The immunosignals were 

visualized with an Odyssey Infrared Imaging System (Li-cor, Lincoln, NE), and the 

quantitation of immunoblots was done using Odyssey Software 2.0 (Li-cor).  

 

Sytox green cytotoxicity assays 

 Cell death was determined after exposing the primary striatal neurons to manganese 

using the Sytox green cytotoxicity assay. Sytox green is a vital probe of low background 

fluorescence that is excluded from cells with intact membranes, but labels nucleic acids in 
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cells that have impaired membrane integrity or that have recently died to produce green 

fluorescence (Roth et al., 1997; Sherer et al., 2002). The assay was performed as previously 

described (Kaul et al., 2005b). In brief, the primary striatal neurons were treated with 

manganese (0-150 µM) and 1 µM Sytox green fluorescent dye for 24 h. The cytotoxic cell 

death was then quantified by measuring DNA-bound Sytox green using the Synergy 2 

Multi-Mode Microplate Reader (excitation 485 nm; emission 538 nm) (BioTek, Winooski, 

VT). Fluorescent images of Sytox-positive cells were taken with a NIKON TE2000 

microscope, and pictures were captured with a SPOT digital camera. 

 

Caspase-3 enzymatic assays 

 Caspases-3 activity was measured as previously described (Kaul et al., 2005a). 

Briefly, after treatment with manganese (0-150 µM), cells lysates were prepared and 

incubated with a specific fluorescent substrate, Ac-DEVD-AMC (50 µM) at 37 °C for 1 h. 

Caspases-3 activity was then measured using a SpectraMax Gemini XS Microplate Reader 

(Molecular Devices, Sunnyvale, CA) with excitation at 380 nm and emission at 460 nm. The 

caspase-3 activity was calculated as fluorescence units per milligram of protein.  

 

Transient transfections and reporter gene assays 

 Transient transfections of NIE-115 cells were performed using Lipofectamine 2000 

reagent (Invitrogen) according to the manufacturer’s instructions. Cells were plated at 0.3 × 

106 cells/well in six-well plates one day before transfection. Each transfection was 

performed with 4 µg of reporter constructs along with 0.5 µg of β-galactosidase expression 

vector pcDNA3.1-βgal (Invitrogen) used to monitor transfection efficiencies. Cells were 
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harvested at 24 h post-transfection, lysed in 200 µl of Reporter Lysis Buffer (Promega), and 

assayed for luciferase activity. For cotransfection assays, 8 µg of expression plasmids for 

p65, p50 or p65 deletion as indicated in figures was added to the reporter plasmids. The total 

amount of DNA was adjusted by adding empty vector pcDNA-3.1 (Invitrogen). In some 

experiments, MnCl2 (300 µM) was added 12 h after DNA transfection, and luciferase 

activity was measured at the indicated times.  

 Luciferase activity was measured on a Synergy 2 Multi-Mode Microplate Reader 

(BioTek, Winooski, VT) using the Luciferase assay system (Promega), and β-galactosidase 

activity was detected using the β-Galactosidase Enzyme assay system (Promega). The ratio 

of luciferase activity to β-galactosidase activity was used as a measure of normalized 

luciferase activity. All values were determined from three independent transfection 

experiments done in triplicate and expressed as average values ± S.E.  

 

Quantitative real-time RT-PCR and methylation specific PCR (MSP) 

 Total RNA was isolated from fresh cell pellets using the Absolutely RNA Miniprep 

Kit (Stratagene, La Jolla, CA) according the manufacturer’s protocols. Aliquots of 3 µg of 

total RNA were used for first strand cDNA synthesis by random primer and AffinityScript 

Multiple Temperature Reverse Transcriptase in a 20 µl reaction volume using an 

AffinityScript QPCR cDNA Synthesis Kit (Stratagene). Quantitative RT-PCR was performed 

in an Mx3000P QPCR System (Stratagene) using the Brilliant SYBR Green QPCR Master 

Mix Kit (Stratagene), with cDNAs corresponding to 150 ng of total RNA, 12.5 µl of 2 × 

master mix, 0.375 µl of reference dye, and 0.2 µM of each primer in a 25-µl final reaction 

volume. All reactions were performed in triplicate. Sequences for PKCδ primers used in this 
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study are shown in supplemental Table 1. β-actin was used as internal standard with the 

primer set purchased from Qiagen (QuantiTect Primers, catalog number QT01136772). The 

PCR Cycling conditions contained an initial denaturation at 95 °C for 10 min, followed by 40 

cycles of denaturation at 95 °C for 30 sec, annealing at 60 °C for 30 sec, and extension at 

72°C for 30 sec. Fluorescence was detected during the annealing step of each cycle. 

Dissociation curves were run to verify the singularity of the PCR product. The data were 

analyzed using the comparative threshold cycle (Ct) method (Livak and Schmittgen, 2001) . 

The PKCδ mRNA values were normalized to the amount of β-actin internal control in each 

sample and expressed as the fold of mRNA levels of control samples (set to 1).    

 For MSP experiments, genomic DNA was isolated using the DNeasy blood & tissue 

kit as mentioned earlier. Bisulfite modification was subsequently carried out on 500 ng of 

genomic DNA by the MethylDetector bisulfite modification kit (Active Motif, Carlsbad, CA) 

according to the manufacturer’s instructions. Two pairs of primers were designed to amplify 

specifically methylated or unmethylated PKCδ sequence using MethPrimer software (Li and 

Dahiya, 2002). The cycling condition was: 94 °C for 3 min, after which 35 cycles of 94 °C 

for 30 sec, 54 °C for 30 sec, 68 °C for 30 sec, and finally 72 °C for 5 min. PCR products 

were loaded onto 2% agarose gels for analysis.  

 

Chromatin immunoprecipitation (ChIP) 

 The ChIP-IT Express enzymatic kit from Active Motif was used to analyze the in 

vivo binding of NFκB p65 subunit onto the mouse PKCδ promoter region. Unless otherwise 

stated, all reagents, buffers and supplies were included in the kit. The ChIP assays were 

performed following the manufacture’s instructions with slight modifications. Briefly, ~1.5 × 
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107 cells were fixed in 1% formaldehyde for 10 min at room temperature. After 

cross-linking, the nuclei were prepared and chromatin was enzymatic digested to 200-1500 

bp fragments (verified through running on a 1% agarose gel) by incubation with the 

enzymatic shearing cocktail for 12 min at 37 °C. The sheared chromatin was collected by 

centrifuge, and a 10-µl aliquot was saved as an input sample. Aliquots of 70-µl sheared 

chromatin were incubated overnight with rotation at 4 °C with protein G magnetic beads and 

three µg indicated antibody. Equal aliquots of each chromatin sample were saved for 

no-antibody controls. After extensive washing, reversal of cross-links, and proteinase K 

digestion, the elute DNA in the immunoprecipitated samples was directly collected on a 

magnetic stand, and the input DNA was purified by phenol/chloroform extraction and 

ethanol precipitation. The DNA samples were analyzed by PCR using primer pairs designed 

to amplify a region (-103 to +60) within PKCδ promoter. Conditions of linear amplification 

were determined empirically for the primers. PCR conditions are as follows: 94 °C 3 min; 94 

°C 20 sec, 58 °C 30 sec, and 72 °C 30 sec for 35 cycles. The PCR products were resolved by 

electrophoresis in a 1.0% agarose gel and visualized after ethidium bromide staining.  

 

Bioinformatics 

 CpG island identification was analyzed with the web-based program CpG Island 

Searcher (Takai and Jones, 2002). This program defines a CpG island as a region with a G+C 

content ≥ 50%, longer than 200 bp nucleotides, and an Observation/Expectation CpG ratio > 

0.6. The search for the phylogenetic sequence conservation between human and murine 

PKCδ promoter was conducted with the DiAlign professional TF Release 3.1.1 (DiAlign TF) 

(Morgenstern et al., 1996; Morgenstern et al., 1998) (Genomatix Software, Munich, 
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Germany). This program identifies common transcription factor binding site matches located 

in aligned regions though a combination of alignment of input sequences using multiple 

alignment program DiAlign (Morgenstern et al., 1996; Morgenstern et al., 1998) with 

recognition of potential transcriptional factor binding sites by MatInspector software 

(Cartharius et al., 2005) (Genomatix Software), which employed matrices library version 8.0. 

The solution parameters for MatInspector program were: core similarity of 0.75 and 

optimized matrix similarity (default program’s settings). 

 

Statistical analysis 

 Unless otherwise stated, all data were determined from three independent 

experiments, each done in triplicate, and expressed as average values ± SEM. All statistical 

analyses were performed using the GraphPad Prism 4.0 software (GraphPad Software, San 

Diego, CA). One-way analysis of variance followed by the Tukey multiple comparison tests 

was used for statistical comparisons, and differences were considered significant if P-values 

< 0.05.  

 

Results 

 

Manganese exposure induces PKCδδδδ expression in primary striatal neurons culture 

 We have previously described that PKCδ functions as an oxidative-stress sensitive 

kinase and its proteolytic activation plays a critical role in manganese-induced dopaminergic 

degeneration (Latchoumycandane et al., 2005). Given the importance of PKCδ in modulating 

manganese-induced apoptotic signaling events, we asked whether manganese nerurotoxicity 
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involves up-regulation of PKCδ expression as a novel mechanism to promote apoptosis. This 

possibility is favored by previous studies showing that PKCδ expression is specifically 

induced in the perifocal cortex and striatum under certain pathologic conditions, such as 

brain ischemia (Koponen et al., 2000). Furthermore, several lines of evidence linked 

manganese-induced gene expression changes to manganese intoxication (Gonzalez et al., 

2008; Guilarte et al., 2008; Prabhakaran et al., 2009). To test this hypothesis, we first 

examined the capacity of manganese to potentiate expression of PKCδ in primary striatal cell 

cultures. Because previous studies on monkeys showed that the levels of manganese in the 

striatum and globus pallidus can reach to a higher value than 200 µM, we chose the 

manganese concentrations up to 300 µM to examine its effect in primary striatal neurons. As 

shown in Figure 1, when the striatal culture was treated with increasing doses of manganese 

for 24 h or 48 h, both total PKCδ and cleaved PKCδ abundance were time- and 

dose-dependently increased. These results led us to further evaluate whether increasing 

PKCδ levels by manganese correlates with neurotoxicity. Accordingly, we examined 

neurotoxicity following manganese exposure in primary striatal neurons from PKCδ 

knock-out and wild-type mice. The extent of apoptosis in both primary cultures treated with 

50 and 150 µM manganese for 24 h was measured by caspase-3 enzymatic activity (Figure 

2A) and Sytox Green cytotoxicity (Figure 2B and 2C) analysis. Manganese induced a 

dose-dependent increase in the caspase-3 activity and cytotoxicity in striatal neurons from 

PKCδ+/+ mice, whereas primary striatal neurons from PKCδ
-/- mice showed a significant 

reduction in the manganese-induced caspase-3 activity (p<0.01) and cell death (p<0.001). 

These results clearly suggest that an increase in PKCδ levels is at least partly responsible for 
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the enhanced susceptibility to manganese toxicity. 

 

Treatment with manganese results in a marked induction of PKCδ protein and mRNA 

in murine NIE-115 cells 

 Next, we investigated a potential role of manganese in PKCδ expression by utilizing a 

cultured neuronal cell line (NIE-115) as an in vitro model system. The murine 

neuroblastoma-derived NIE-115 cells, which express a high level of endogenous tyrosine 

hydroxylase (Amano et al., 1972), have been well characterized as an in vitro model for 

studying neurodegeneration (Ostlund et al., 2001; Benitez-King et al., 2003; Kranenburg et 

al., 2005). PKCδ expression at both protein and mRNA levels was determined by using 

real-time PCR and Western blot analyses, respectively, in NIE-115 cells exposed to 

manganese. As shown in Figure 3A, exposure of NIE-115 cells to 300 µM MnCl2 at varying 

intervals revealed a time-dependent induction of PKCδ protein, which was readily apparent 

at 6 h following addition of manganese and became maximal ~300% increase compared to 

control at 24 h. At this time point, treated NIE-115 cells with increasing concentrations of 

manganese also exhibited a dose-dependent induction of PKCδ with optimal response seen at 

the concentration of 300 µM of manganese (Figure 3B). Essentially equivalent results were 

obtained when the rat dopaminergic N27 cells were examined (data not shown). Furthermore, 

similar to the protein levels, the steady-state levels of PKCδ mRNA was also enhanced after 

incubation with manganese in a time- and dose-dependent fashion (Figure 3C and 3D). 

Taken together, these results demonstrated that manganese treatment dramatically induces 

PKCδ expression in NIE-115 cells, and suggested that NIE-115 cells can offer a relevant 

model system to analyze the regulation of PKCδ expression by manganese.   
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A 148-bp proximal fragment of the mouse PKCδδδδ promoter is essential for basal PKCδδδδ 

expression in NIE-115 cells 

 The aforementioned direct induction of PKCδ mRNA by manganese suggested that 

the effect of manganese was exerted at the transcriptional level. The mouse PKCδ gene 

comprises 18 exons, and its genomic structure has been described (Suh et al., 2003). Like 

other mammalian protein kinase genes, PKCδ promoter lacks a TATA box. Further, it does 

not contain the so-called initiator element or the downstream promoter element, which are 

located at various distances downstream of the transcription start site (TSS) and utilized by 

most TATA-less promoters to initiated transcription. To date, mechanisms responsible for 

transcriptional regulation of PKCδ, especially in neuronal cells, are largely unknown. Thus, 

as a first step towards studying the mechanisms of manganese-induced activation of PKCδ 

transcription, we analyzed PKCδ promoter activity. For this purpose, a reporter construct 

containing a 1.4 kb fragment upstream of TSS of the mouse PKCδ gene fused to the 

luciferase gene, pGL3-1448/+1, was transfected into murine neuroblastoma NIE-115 and 

N-2a, or murine dopaminergic MN9D cells, which express endogenous PKCδ. Luciferase 

activity of this construct increased nearly 700% when compared with pGL3-Basic control, 

suggesting that this 1.4-kb sequence possesses functional promoter activity in all three cell 

lines (Figure 4). To further delineate the region contributing to PKCδ promoter activity, a 

series of deletion constructs were generated and tested for their relative transcriptional 

activity in transient transfection studies. As shown in Figure 4, the construct pGL3-147/+1 

displayed maximal luciferase activity in all cells. In contrast, the promoter activity was 
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almost abolished to the level of pGL3-Basic control, when the sequence from -147 to +1 was 

deleted within the constructs: pGL3-1448/-201, pGL3-1448/-1196, and pGL3-761/-147. 

Thus, these data suggested that this region between -147 to +1 contains the sequence of 

nucleotides necessary for basal transcription of mouse PKCδ gene in neuronal cells. Notably, 

although all three cell lines demonstrated similar profiles of luciferase expression, there were 

several major differences. For example, the promoter regions -1448/-761 and -761/-147 

appear to possess cell-specific repressive elements that negatively regulated transcriptional 

activity in N2-a and MN9D cells, as the addition of them into the proximal pGL3-147/+1 

construct caused a significant reduction in luciferase activity. However, no such effect was 

observed in NIE-115 cells. 

 

The 148-bp proximal fragment of the mouse PKCδδδδ promoter confers responsiveness to 

manganese treatment in NIE-115 cells 

 Having determined that the region between -147 to +1 is required for basal PKCδ 

promoter expression, we next investigated whether this region mediates the enhancing effect 

of manganese on PKC expression. NIE-115 cells were transiently transfected with the 

pGL3-147/+1 or the full-length promoter reporter constructs, and luciferase activity was 

assayed after incubation with 300 µM manganese for different intervals. As shown in Figure 

5A, we observed that manganese promoted a time-dependent activation of the full-length 

(-1448/+1) promoter activity, with maximal activation seen at 12 h following addition of the 

drug, ~230%  increase over control. Importantly, the proximal -147/+1 promoter sequence 

exhibited a similar time-dependent response to manganese, albeit to a slightly lesser extent 
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(Figure 5B). Collectively, these data revealed that the region located between -147 and +1 

plays a major role for mediating responsiveness to manganese.  

 

Functional characterization of the 148-bp PKCδδδδ proximal promoter 

 We further concentrated our following studies on the -147/+1 fragment that mediated 

the induction by manganese. A comparison of this region with the corresponding region from 

human PKCδ genes using a DiAlign professional program (Cartharius et al., 2005) revealed 

that this region is highly conserved between the two species (Figure  6A). Subsequent 

analysis of this region with the program MatInspector revealed the presence of a number of 

potentially important transcription factor-binding sites (TFBS) which are conserved between 

species, suggesting that they may function biologically in the regulation of PKCδ gene 

expression. Figure 6A depicted the potential regulatory elements that have been identified 

through the computerized analysis. Because prior studies from us and others have reported 

that NFκB positively regulate PKCδ expression (Suh et al., 2003), we thought to examine the 

functions of those two proximal NFκB sites in more detail. Using site-directed mutagenesis, 

we prepared either single or double mutation of NFκB sites within the context of basal PKCδ 

reporter construct pGL3-147/+1. Transient transfections of NIE-115 and MN9D cells were 

carried out with each of these mutant promoter constructs, and the promoter activity of 

mutated constructs was determined and expressed relative to that of wild-type pGL3-147/+1. 

As shown in Figure 6B, single mutation of the downstream κB site (κB1, centered at bp -14) 

dramatically reduced the promoter activity to the levels present in pGL3-Basic groups. In 

striking contrast, there was no significant reduction in the promoter activity when the 
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upstream κB site (κB2, centered at bp -44) was mutated, and indeed this even caused a slight 

increase in the luciferase activity in MN9D cells. When both sites were mutated, the 

promoter activity was completely abolished. These results suggested that these two binding 

sites for NFκB were functionally different: the site1 appears to be extremely important for 

basal PKCδ expression in these cells; however, the site2 appears to be unimportant.   

 To further determine the potential regulatory role of NFκB for PKCδ in neuronal 

cells, Wild-type NFκB-p65 and NFκB-p50 expression constructs and NFκB-p65 deletion 

construct p65∆C, containing p65 amino acids 1 to 337, were employed to study the effect of 

overexpressing NFκB on the regulation of the PKCδ promoter activity in NIE-115 and 

MN9D cells. As shown in Figure 6C, when cells were cotransfected with either p65 or p50 

expression vector, luciferase activities were significantly increased, with the extent of 

transactivation in MN9D cells being more potent than that in NIE-115 cells for each 

expression vector (3.2- and 2.8-fold stimulation in MN9D cells, and 1.7- and 1.5-fold 

stimulation in NIE-115 cells for p65 and p50, respectively). By contrast, cotransfection of 

mutant form of p65 had no discernable effect on the luciferase activity compared to empty 

vector control, suggesting that transactivation of PKCδ by p65 overexpressing is a specific 

event. Together, these results suggested that both p65 and p50 are able to potently 

transactivate the PKCδ promoter in neuronal cells. Overexpression of these NFκB proteins in 

transfected cells was verified by Western blot analysis (data not shown).  

 In addition to NFκB binding sites, we also examined the function of other potential 

binding sites within the 148-bp basal PKCδ promoter region using site-directed mutagenesis 

analysis. Each mutation PKCδ promoter construct was transiently transfected into NIE-115 



www.manaraa.com

305 

 

cells. As shown in Figure 7, our results showed that mutations of the binding sites for PAX9, 

KLF3, AP4, KLF12, or Sp2 had no or slight alteration in promoter activity. Surprisingly, 

when the binding site for NERF1a (-99 to -79) was mutated, the promoter activity was 

completely abolished, as seen for double NFκB site mutations, suggesting that this site is also 

essential. In addition, a binding site for PU.1 located at (-141 to -121) appears to have a 

negative role in control of PKCδ promoter activity as mutation of this site caused a 

significant induction in the luciferase activity. 

 

Induction of PKCδδδδ expression by manganese depends on NFκκκκB signaling pathways 

 Recent evidence has suggested a close relationship between manganese and 

redox-sensitive molecules, including activation protein 1 and NFκB (Liu et al., 2005; 

Moreno et al., 2008). Based on this understanding and our observation that basal PKCδ 

promoter activity is regulated by NFκB, we reasoned that NFκB may play a role in the 

manganese up-regulation of PKCδ gene transcription. To test this hypothesis, transient 

transfections of NIE-115 cells were performed with the wild-type or NFκB-site-mutated 

reporter constructs. Luciferase activity was assayed after incubation with 300 µM manganese 

for 12 h. Again, as shown in Figure 8A, manganese treatment was able to induce a ~230% 

increase in the promoter activity of the wild-type construct pGL3-147/+1. However, when 

the reporter containing the mutation of NFκB site 1 was transiently transfected into NIE-115 

cells, both basal and manganese-stimulated PKCδ promoter activities were completely 

abolished, suggesting that this NFκB site is critical for manganese-mediated activation of 

PKCδ promoter. To further elucidate whether manganese increases expression of PKCδ 
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through activation of NFκB signaling, we carried out a ChIP assay to examine the effect of 

manganese on the interactions of NFκB-p65 proteins with PKCδ promoter’s κB element in 

vivo. After crosslinking, nuclei were isolated and subjected to enzymatic digestion. The 

sheared chromatin was immunoprecipitated without or with antibody against NFκB-p65. The 

ChIP DNA was then served as a template to amplify either the region of bp -122 to +38 

spanning these two κB sites at PKCδ promoter (Figure  8B, lane 1-9) or the region of bp -37 

to +99 spanning the downstream κB site alone (Figure 8B, lane 10-18). The results 

demonstrated that exposure to manganese significantly recruited endogenous p65 binding to 

PKCδ promoter in a time-dependent manner. No detectable signal was observed in the 

absence of antibody in the immunoprecipitation process. Taken together, these results 

suggested that manganese can interact with NFκB signaling pathways to induce PKCδ 

expression. 

  

Manganese-dependent expression of PKC isoforms in the mice brain 

 Finally, we wanted to test whether manganese exposure also induces elevated PKCδ 

levels in intact mice. For this purpose, we quantified the proteins of PKC isoforms (α, βI, δ, 

ζ, and ε) in brain striatal tissue from manganese-exposed and control mice. The striatum was 

chosen because it is one of the brain regions primarily vulnerable to manganese in human 

studies on manganese intoxication. C57B1/6 mice were chronically exposed to various doses 

of MnCl2 for 4 weeks by intragastric gavage, a route mimicking one of the most frequent 

sources of manganese exposure in humans, and striatal tissues were subjected to Western blot 

using specific anti-PKC isozyme antibodies. As shown in Figure 9A, oral treatment with 
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manganese markedly induced the protein level of native PKCδ in the striatum in a 

dose-dependent manner. Quantification of the immunoblotting signals (Figure 9B) showed 

that high dose of manganese (10 mg/kg) yielded a ~480% increase in native PKCδ 

abundance when compared to the control animals. Furthermore, the level of cleaved PKCδ, a 

catalytically active fragment resulting from proteolytic cleavage, was also significantly 

enhanced by manganese, with the maximum effect (~220% induction) achieved at 10 mg/kg 

manganese (Figure 9B). In the olfactory bulb region, which is known to have the largest 

accumulation of manganese in the brain following inhalation manganese exposure, no 

significant changes were found in the levels of either native or cleaved PKCδ after treatment 

with manganese at any dose (Figure 9C). The mechanism behind this effect is unclear, but it 

may be related to the regional and cellular specificity of manganism pathology (HaMai and 

Bondy, 2004; Roth, 2009). A similar trend for increased PKCα protein following manganese 

exposure was also observed, whereas the extent of up-regulation was much less than that 

observed for PKCδ. Striatal PKCζ protein levels were up-regulated only marginally by 

manganese. PKCβI showed no measurable change. Interestingly, in contrast to the two 

up-regulation species: PKCα and PKCδ, manganese exposure potently caused a reduction of 

PKCε. Maximal reduction (>50%) was achieved at 10 mg/kg manganese (Figure 9B). It 

should be noted that, unlike PKCδ, PKCε is widely regarded as exhibiting anti-apoptotic 

properties. Overall, these data demonstrated that striatal protein levels of PKC isozymes are 

differentially regulated by manganese, and specifically, PKCδ is the most strongly 

up-regulated PKC isoform in response to manganese exposure, which reinforced our 

hypothesis that up-regulation of PKCδ expression contributes to the manganese-induced 
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neurotoxicity.  

 

Discussion 

 

 In the present study, we demonstrated for the first time that PKCδ expression is 

highly induced upon exposure to manganese in both in vivo and in vitro studies. Importantly, 

resistance to manganese toxicity is associated with the levels of PKCδ, as primary neurons 

from PKCδ-/- mice showed a reduced cell death following manganese treatment compared to 

primary neurons from PKCδ+/+ mice, suggesting that the increased PKCδ levels might be 

responsible, at least in part, for the manganese-induced neuronal degeneration. These data 

expand our earlier reports that manganese-induced proteolytic activation of PKCδ is a key 

mediator in manganese neurotoxicity. Furthermore, studies using NIE-115 cell cultures 

indicated that the induction of PKCδ by manganese is likely mediated through an 

NFκB-dependent mechanism.  

 Interestingly, a differential regulation profile of PKC isoforms in response to 

manganese was revealed in striatum of manganese-exposed animals. Of the five PKC 

subspecies examined, PKCδ was the most highly up-regulated isoform, implying an 

involvement of PKCδ up-regulation in the manganese-associated neurotoxicity. The 

increased PKCδ occurs selectively in the striatum as we could not detect any changes in the 

olfactory bulb, correlating with the regional and cellular specificity of manganism pathology 

(HaMai and Bondy, 2004; Roth, 2009). Furthermore, consistent with our previous cell-based 

reports, manganese exposure also yielded a marked increase in the levels of activated PKCδ, 

which is at least partly a consequence of PKCδ up-regulation. In addition, we observed a 
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moderate up-regulation of PKCα as well as a significant down-regulation of PKCε, whereas 

expression of PKCβI and PKCζ was not, or only marginally, affected (Figure 9). The PKC 

signaling pathway has been described to be causally involved in the neuronal cell death and 

survival. Moreover, individual PKC isozymes exert different and sometimes opposing roles 

in modulating these processes (Gutcher et al., 2003). For example, PKCδ and PKCε have 

been widely regarded as pro-apoptotic and anti-apoptotic molecules, respectively. Our PKCδ 

and PKCε data therefore fit with the known roles of these isoforms in cell survival. For 

PKCα, on the other hand, the majority of published studies support the idea that this kinase is 

a positive regulator of cell survival (Gutcher et al., 2003). However, there is also literature 

indicating that PKCα could possibly act as a pro-apoptotic kinase (Nowak, 2002). Our data 

about up-regulation of PKCα suggests a potential role of this kinase in the molecular events 

associated with manganese. Nevertheless, further studies are needed to clarify the role of 

PKCα/PKCε signaling pathways in the pathological action of manganese. In addition to 

abnormalities of PKC activity and translocation, accruing evidence suggests that aberrant 

expressions of certain PKC isozymes are associated with pathology of neurodegenerative 

diseases. For example, decreased PKCβII expression was found in human HD brains 

(Hashimoto et al., 1992). In a transgenic mice model, loss of PKCγ expression was 

associated with the neuronal dysfunction in spinocerebellar ataxia type 1 (Skinner et al., 

2001). Alterations in PKC levels were also observed in autopsied brains from AD patients 

(Cole et al., 1988). In the present study, we add to the prior body of knowledge by reporting 

for the first time on PKC abnormalities in a model of manganese-exposed mice. Of note, the 

increasing levels of PKCδ proteins are common effects of manganese in primary neurons, 

NIE-115 cells, and brains.  
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 PKCδ plays a pivotal role in apoptosis in many cell types, and its expression must 

therefore be tightly regulated. Although it has been reported that PKCδ could be regulated in 

a number of cell models through either a gnomic or non-genomic mechanism, little 

information is available on the mechanisms that control PKCδ expression at the 

transcriptional level, especially in neurons. To our knowledge, only few studies reported the 

functional elements in the mouse, rat, and human PKCδ promoter, or the characteristics of 

the factors involved in the control of PKCδ transcription. Therefore, to further investigate the 

molecular basis of manganese-induced PKCδ gene transcription, we first addressed the 

regulatory cis-acting elements and candidate factors involved in the basal PKCδ gene 

transcription in neuronal cells. By using deletion studies, we identified a specific proximal 

PKCδ promoter region present at -147 to +1 that significantly contributes to the basal PKCδ 

expression in NIE-115, MN9D cells, and N-2a cells. Bioinformatic analysis revealed that this 

region is highly complex and contains multiple potential TFBS. These include two proximal 

κB sites located in close proximity, which provides easy access and availability for NFκB to 

transactivate PKCδ gene. Interestingly, using a site-specific mutagenesis study, a diverse role 

for these two κB elements was revealed with only the downstream site identified as 

biologically functional. The mechanisms behind the differential effect are unclear, but 

sequence and position-specificity might be important. A recent study demonstrated that the 

functional necessity of the NFκB site could be related to its sequence specificity, as well as 

its relative position on the promoter (Wang et al., 2005b). Our cotransfection studies using 

NFκB expression vectors indicated that NFκB proteins act as transactivators of PKCδ gene. 

This finding is not surprising because previous studies by our laboratory and others have 
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established a crucial role of NFκB in PKCδ gene expression (Suh et al., 2003). In addition to 

the NFκB sites, two potential sites for NERF1a and PU.1, which positively and negatively 

regulate basal PKCδ promoter activity, respectively, were also localized by the mutagenesis 

analysis. Experiments are in progress to identify the candidate factors that physically interact 

with these sites, as well as the potential involvement of these cis-elements in 

manganese-mediated PKCδ gene activation. It also should be noted that epigenetic 

mechanisms such as DNA methylation may play a role in the manganese induction of PKCδ, 

since we have shown that the proximal PKCδ promoter region just downstream of TSS is 

highly methylated (Supplemental Figure 1).  

 NFκB, a ubiquitously expressed transcription factors in mammalian cells, has been 

implicated in various physiological processes in nerve system. A variety of stimuli has been 

shown to activate NFκB in the CNS, such as viral infection and oxidative stress (Meffert and 

Baltimore, 2005). As a redox-sensitive transcription factor, growing evidence has suggested a 

role of NFκB in manganese-related toxicity (Liu et al., 2005; Moreno et al., 2008). In the 

present study, we demonstrated that NFκB is likely to be the major, if not only, contributing 

factor responsible for manganese-stimulated PKCδ elevation, at least in vitro. The role of 

NFκB in manganese-stimulated upregulation of PKCδ in vivo, however, remains to be 

determined. Loss of NFκB transactivation through mutation of the κB binding site resulted in 

complete ablation of PKCδ promoter activation in response to manganese. Furthermore, as 

shown in ChIP assays, manganese caused an increased recruitment of NFκB to the PKCδ 

promoter in our cell culture model. These data suggest that NFκB is a key transcription factor 

that regulates PKCδ upregulation in manganese-treated cells.  
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 In summary, our data suggest that manganese exposure positively impacts the PKCδ 

gene expression in both in vivo and in vitro. These findings provide further insights into the 

mechanisms of manganese neurotoxicity.   
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Figure 1: Manganese exposure increases PKCδδδδ protein levels in primary striatal 

neurons culture.  

After incubation with varying doses of manganese for increasing intervals as indicated, the 

primary striatal neurons were collected, lysed and subjected to Western blot analysis of 

PKCδ. A representative immunoblot is shown.  
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Figure 2: PKCδδδδ-deficient primary striatal neurons show resistance to manganese 

toxicity in culture 

PKCδ+/+ and PKCδ-/- primary striatal neurons were treated with varying doses of manganese 

for 24 h and assayed for caspase-3 activity (A) and cell death (B, C). Cell death was 

measured using the Sytox Green cytotoxicity assay as described in “Materials and Methods”. 

The caspase-3 activities or cytotoxicities were determined and expressed as a percentage 

induction relative to unstipulated controls. The results represent the mean ± SEM of two 

independent experiments performed in pentaplicate. (C), Representative phase contrast and 

Sytox green staining images.   
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Figure 3. Treatment with manganese induced PKCδδδδ protein and mRNA in murine 

NIE-115 cells  

(A, B) Representative immunoblots of PKCδ in NIE-115 cells after treatment with 300 µM 

manganese for varying intervals as indicated (A), or with increasing doses of manganese for 

24 h (B). Quantitation data of PKCδ levels are shown on the right. The results are normalized 

to β-actin and expressed as a percentage of the control cells. Data shown represent as mean ± 

SEM of three independent experiments (*p<0.05; and **p<0.01, compared with control). (C, 

D) Real-time qRT-PCR analysis demonstrates that the induction of PKCδ mRNA after 

manganese treatment in a time (C)-, and dose (D)-dependent fashion. For the time-response, 

NIE-115 cells were incubated with 300 µM manganese. For the dose-course studies, cells 

were treated with manganese for 12 h. Results were analyzed as described under Materials 

and Methods. Data shown represent mean ± SEM of three independent experiments 

performed in triplicate (*p<0.05; **p<0.01; and ***p<0.001, compared with control).  
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Figure 4: Deletion analysis of PKCδδδδ promoter activity in NIE-115, N2-a, and MN9D 

cells 

An extensive series of PKCδ promoter deletion derivatives was generated by PCR methods 

and inserted into the pGL3-Basic luciferase vector. Each construct was transiently transfected 

into NIE-115 (black bar), N2-a (open bar), and MN9D (blue bar) cells. Cells were harvested 

24 h after transfection and luciferase activities were determined. The plasmid 

pcDNA3.1-βgal was included in each transfection to correct the differences in transfection 

efficiencies. The activity of full-length promoter construct (pGL3-1448/+1) was arbitrarily 

set to 100, and the relative luciferase activity of the other constructs was calculated 

accordingly. The results represent the mean ± SEM of three independent experiments 

performed in triplicate. Schematic representation of PKCδ promoter deletion/luciferase 

reporter constructs is shown on the left. The 5’ and 3’ positions of the constructs with respect 

to the transcription start site are depicted. 
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Figure 5: A sequence located between -147 and +1 confers responsiveness to manganese 

treatment in NIE-115 cells 

NIE-115 cells transiently transfected with PKCδ promoter constructs pGL3-1448/+1 (A) or 

pGL3-147/+1 (B) were incubated with or without 300 µM manganese for increasing intervals 

as indicated. The plasmid pcDNA3.1-βgal was included in each transfection to correct the 

differences in transfection efficiencies. Luciferase activities were determined and expressed 

as a percentage induction relative to unstipulated controls. The results represent the mean ± 

SEM of three independent experiments performed in triplicate (*p<0.05; and ***p<0.001, 

compared with untreated cells).  



www.manaraa.com

321 

 

Figure 6: Functional analysis of the 147-bp PKCδδδδ proximal promoter  

(A) Sequence comparison of the mouse PKCδ promoter region between -147 to +1 with the 

corresponding regions of the human PKCδ gene. Sequence differences are indicated and gaps 

introduced to maximize homology are marked by dashes. Phylogenetically conserved 

transcriptional factor-binding sites as well as the potential binding sites present only in the 

mouse PKCδ promoter are indicated (overlined). (B) The wild-type or mutated reporter 

constructs containing targeted substitutions in the NFκB binding sites were individually 

transfected into NIE-115 and MN9D cells, and luciferase activities were assayed after 24 h. 

To adjust for transfection efficiency, the plasmid pcDNA3.1-βgal was included in each 

transfection. The activity of wild-type construct (pGL3-147/+1) was arbitrarily set to 100, 

and promoter activity of the mutants is expressed as a percentage of the wild-type construct. 

The results represent the mean ± SEM of three independent experiments performed in 

triplicate. Schematic representation of the wild-type or mutated PKCδ promoter constructs is 

shown on the left. The potential transcriptional factor-binding sites are indicated at the top. 

The mutated site is marked with × (red). The sequences of wild-type and mutated NFκB site 

are shown below the bar graph. The substituted nucleotides are shown in bold. (C) NIE-115 

and MN9D cells were cotransfected with the construct pGL3-147/+1 and 8 µg of 

pcDNA-p65, pcDNA-p65-mutant, pcDNA-p50 or empty vector (EV) pcDNA3.1. Luciferase 

activities were assayed after 24 h. The plasmid pcDNA3.1-βgal was included in each 

transfection to adjust for transfection efficiency. The activity that obtained following 

cotransfection of the construct pGL3-147/+1 with empty vector (EV) was arbitrarily set to 

100, and all other data are expressed as a percentage thereof. The results represent the mean 
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± SEM of three independent experiments performed in triplicate (**p<0.01; and ***p<0.001, 

compared with EV-transfected cells).  
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Figure 7: Mutational screening of the putative TFBS in the 147-bp PKCδδδδ proximal 

promoter in NIE-115 cells 

The wild-type or mutated reporter constructs containing targeted substitutions in the other 

potential transcription factor-binding sites were individually transfected into NIE-115 cells, 

and luciferase activities were assayed after 24 h. To adjust for transfection efficiency, the 

plasmid pcDNA3.1-βgal was included in each transfection. The activity of wild-type 

construct (pGL3-147/+1) was arbitrarily set to 100, and promoter activity of the mutants is 

expressed as a percentage of the wild-type construct. The results represent the mean ± SEM 

of three independent experiments performed in triplicate. Schematic representation of the 

promoter constructs is shown on the left. The potential transcriptional factor-binding sites are 

indicated at the top. The mutated site is marked with × (red). The sequences of wild-type and 

mutated sites are shown below the bar graph. The substituted nucleotides are shown in bold. 
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Figure 8: Induction of PKCδδδδ expression by manganese depends on NFκκκκB transcription 

factors 

(A) NIE-115 cells transiently transfected with PKCδ promoter construct pGL3-147/+1 

wild-type or NFκB site 1 mutant of were incubated with or without 300 µM manganese for 

12 h. The plasmid pcDNA3.1-βgal was included in each transfection to correct the 

differences in transfection efficiencies. Luciferase activities were then determined and 

expressed as a percentage of the unstipulated controls. The results represent the mean ± SEM 

of three independent experiments performed in triplicate (***p<0.001, compared with 

untreated cells). (B) Assessment of NFκB-p65 binding on the PKCδ promoter by ChIP 

assays. NIE-115 cells were treated with or without 300 µM manganese for increasing 

intervals as indicated. Crosslinked chromatin was prepared and sheared by enzymatic 

digestion. The protein/DNA complex was incubated with or without antibody (No Ab) 

against p65 for ChIP analysis, and PCR was performed to amplify PKCδ promoter region 

-122 to +38 (lane 1-9) or -37 to +99 (lane 10-18), relative to the transcription start site. The 

ChIP result is representative of two separate experiments with similar results. 
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Figure 9: Effects of in vivo chronic manganese exposure on PKCδδδδ protein level 

C57 black mice were administered with 3 mg/kg Mn, 10 mg/kg Mn or an equivalent volume 

of saline (Vehicle) via oral gavage for 4 weeks. Striatum and olfactory bulb tissues from each 

mouse were harvested and prepared for immunoblot analyses. (A) Representative 

immunoblots of selected PKC isozymes (left panel: PKCδ, α, ε, and ζ; right panel: PKCβI) 

in striatum homogenates. (B) Quantitation data. The results are normalized to β-actin and 

expressed as a percentage of the Vehicle. All data in B represent as mean ± SEM from six to 

eight mice per group (**p<0.01; and ***p<0.001, compared with Vehicle). (C) 

Representative immunoblots of PKCδ in the olfactory bulb homogenates.   
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Supplemental Figure 1: MSP analysis of methylation status in PKCδ promoter 

Bisulfite-modified DNA from the indicated cell line was used for MSP with primers specific 

for methylated (M) and unmethylated (U) DNA.  
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CHAPTER VI: GENERAL CONCLUSIONS 

 

 The chapters from II to V each shed new light on the functional aspects of the 

regulation of PKCδ signal transduction in both physiological and pathological conditions. 

Chapter II characterizes essential cis-elements and transcriptional regulators that functionally 

interact with these sites in the promoter and 5’UTR region of mouse PKCδ gene. Chapter III 

demonstrates that histone acetylation-mediated changes in chromatin structure are involved 

in the induction of the PKCδ gene. Chapter IV reveals a functional interaction between PKCδ 

and the PD-related protein α-synuclein. Chapter V reports an induction of PKCδ gene 

expression in response to the parkinsonian toxin manganese. The overall conclusions and 

future perspectives will be discussed in the following sections:  

 

Transcriptional regulation of PKCδ gene expression in neuronal cells involves multiple 

positive and negative cis-elements in the promoter and 5’UTR region  

 The modulation of PKCδ signal transduction is of particular interest because of its 

importance in central nervous systems, in both physiological and pathological conditions. 

Alterations in PKCδ expression could represent an important step in ultimately controlling 

the PKCδ signaling pathway. In the present investigation we studied how PKCδ gene 

expression is regulated in neuronal cells. We have identified the mouse PKCδ basal promoter 

region and characterized a role for two NFκB and one NERF 1a binding sites in the 

regulation of PKCδ basal transcription. Furthermore, multiple Sp binding sites in the 

downstream PKCδ promoter segment reside in the 5’ UTR region and are also essential 

cis-elements controlling PKCδ expression. Subsequent analysis revealed that only the 
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proximal NFκB site is functionally active in NIE115 and MN9D cells. The reason for this 

functional difference between these two κB sites is unknown, but it might be due to a 

sequence-dependent or position-dependent effect. Further analysis is needed to elucidate if 

this is also the case in other cell models or in vivo. NFκB is a key mediator of a variety of 

cellular processes. It has long been thought, for example, that activation of NFκB signaling is 

part of the cellular stress response (see reviews, Mercurio and Manning, 1999; Meffert and 

Baltimore, 2005). Thus, beside being indispensable for the basal PKCδ expression, the κB 

element may confer oxidative-stress inducibility to the PKCδ promoter, resulting in an 

increased production of PKCδ protein and subsequent aberrant activation of PKCδ signaling. 

The binding of Sp and NFκB factors to their respective sites has been demonstrated by ChIP 

and EMSA assays. In the basal state, binding of these proteins to a PKCδ promoter 

potentially facilitates basal expression of PKCδ. The constitutive activation of NFκB in the 

nucleus of N27 cells is further indicative of NFκB participation in the regulation of PKCδ 

transcription. Once bound, both the DNA/Sp and DNA/NFκB complexes may recruit 

transcriptional co-activator or co-repressor complexes to generate additional chromatin 

structural changes. Such factors may include CBP/p300 and HDAC family proteins. At the 

present time, it is not clear whether there is any synergistic action between the Sp family 

factors and NFκB during the process of modulation of PKCδ transactivation, but it is 

conceivable that these proteins can communicate directly or through other interactions with 

bridging proteins. In addition to those proximal and downstream regulatory elements, we also 

delineated an upstream negative/anti-negative cassette, which can oppositely contribute to 

regulating PKCδ transactivation. However, the precise mechanism underlying their actions 

and the candidate factors binding to these elements remain to be defined.  
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 An intriguing aspect of PKCδ gene expression is the involvement of epigenetic 

mechanisms. Our data revealed that the PKCδ non-coding exon1 region is differentially 

methylated: it was hypermethylated in modest PKCδ-expressing cell lines, including NIE115, 

MN9D and N2a cells, whereas little or no methylation was observed in the high expressing 

N27 cells, implicating DNA methylation as a potential mechanism responsible for 

cell-specific expression of PKCδ. Using an epigenetic approach with HDAC inhibition, we 

further delineated that histone acetylation leads to enhanced PKCδ expression, which 

requires Sp protein activity. DNA methylation and histone acetylation oppositely correlate 

with gene expression. Thus, it will be interesting to determine the functional relevance of 

these epigenetic PKCδ gene modifications to PD-like neurodegeneration.  

 

Differential regulation of PKCδ gene by manganese and the PD-related gene 

α-synuclein 

 In the present study we also investigated the effect of the parkinsonian toxicant 

manganese and the PD-associated gene α-synuclein on the expression of the PKCδ gene. Our 

in vitro and in vivo data clearly demonstrated divergent roles for manganese and α-synuclein 

in modulating PKCδ signaling. These findings extend the key role for PKCδ kinase signal 

transduction in parkinsonian neurodegeneration. The mechanism by which α-synuclein 

down-regulates the PKCδ gene appears to be quite complex, partially involving modulation 

of p300 and NFκB signaling. The precise mechanism, however, remains to be identified.   

 In summary, we elucidated the regulatory mechanism of PKCδ transcription in 

neurons. We also characterized the possible regulation of PKCδ by environmental or genetic 

factors that are involved in PD pathology. The integrated mechanism of the regulation of 
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PKCδ expression in neuronal cells and the crosstalk between PKCδ expression and genetic 

risk factors, as well as environmental risk factors, are outlined in the Figure 11.  
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Figure 11. Integrated mechanisms of the regulation of PKCδ expression in neuronal cells, and the crosstalk between PKCδ expression 

and genetic risk factors, as well as environmental risk factors. 
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